You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Phenomena of convection are abundant in nature as well as in industry. This volume addresses the subject of convection from the point of view of both, theory and application. While the first three chapters provide a refresher on fluid dynamics and heat transfer theory, the rest of the book describes the modern developments in theory. Thus it brings the reader to the "front" of the modern research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fields.
This book explains how researchers design, prepare, develop, test and fly their science experiments on microgravity platforms before sending them to space. All preparation phases are explained and presented, including aircraft parabolic flights as part of spaceflight preparation. Twenty international authors, all experts in their own microgravity research field, contribute to chapters describing their experience to prepare experiments before space flights. Fields covered are Physical Sciences and Life Sciences. Physical Sciences covers fluid physics (vibration effects on diffusion; red blood cell dynamics; cavitation in microgravity; capillary driven flows) and material sciences (electromagnetic levitator onboard International Space Station). Life Sciences includes human physiology (sampling earlobe blood; human cardiovascular experiments; tumours in space) and neurophysiology (dexterous manipulation of objects in weightlessness).
Nanophotonics is where photonics merges with nanoscience and nanotechnology, and where spatial confinement considerably modifies light propagation and light-matter interaction. Describing the basic phenomena, principles, experimental advances and potential impact of nanophotonics, this graduate-level textbook is ideal for students in physics, optical and electronic engineering and materials science. The textbook highlights practical issues, material properties and device feasibility, and includes the basic optical properties of metals, semiconductors and dielectrics. Mathematics is kept to a minimum and theoretical issues are reduced to a conceptual level. Each chapter ends in problems so readers can monitor their understanding of the material presented. The introductory quantum theory of solids and size effects in semiconductors are considered to give a parallel discussion of wave optics and wave mechanics of nanostructures. The physical and historical interplay of wave optics and quantum mechanics is traced. Nanoplasmonics, an essential part of modern photonics, is also included.
Analytical solutions to the orbital motion of celestial objects have been nowadays mostly replaced by numerical solutions, but they are still irreplaceable whenever speed is to be preferred to accuracy, or to simplify a dynamical model. In this book, the most common orbital perturbations problems are discussed according to the Lie transforms method, which is the de facto standard in analytical orbital motion calculations. Due to an oversight, an error slipped in Section 4.1 of the book, where it is implicitly assumed the case of the Kepler problem. The following text should replace Sections 4.1 and 4.2 of the book. Cross-references may be affected with the new writing. In particular, former crossed references to Eq.(4.3) should now point to current Eq.(4.12). Please find the Erratum below.
The revised edition gives a comprehensive mathematical and physical presentation of fluid flows in non-classical models of convection - relevant in nature as well as in industry. After the concise coverage of fluid dynamics and heat transfer theory it discusses recent research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fields.
Phononic crystals are artificial periodic structures that can alter efficiently the flow of sound, acoustic waves, or elastic waves. They were introduced about twenty years ago and have gained increasing interest since then, both because of their amazing physical properties and because of their potential applications. The topic of phononic crystals stands as the cross-road of physics (condensed matter physics, wave propagation in inhomogeneous and periodic media) and engineering (acoustics, ultrasonics, mechanical engineering, electrical engineering). Phononic crystals cover a wide range of scales, from meter-size periodic structures for sound in air to nanometer-size structures for informat...
This book examines the impact of the Fourth Industrial Revolution on business strategy, marketing, management, sustainability innovation, and various kinds of industry. It provides a broad overview of ways that organisations have sought to develop a digital strategy, and explores the challenges and opportunities posed by a rapidly transforming digital world. It draws on European and Russian case studies, with chapters addressing smart cities, corporate governance, the digital single market, and agrobusiness. This book will be of interest to academics and practitioners in management and economics, who are interested in digital strategies performance in global markets.
This book brings together more closely researchers working in the two fields of quantum optics and nano-optics and provides a general overview of the main topics of interest in applied and fundamental research. The contributions cover, for example, single-photon emitters and emitters of entangled photon pairs based on epitaxially grown semiconductor quantum dots, nitrogen vacancy centers in diamond as single-photon emitters, coupled quantum bits based on trapped ions, integrated waveguide superconducting nanowire single-photon detectors, quantum nano-plasmonics, nanosensing, quantum aspects of biophotonics and quantum metamaterials. The articles span the bridge from pedagogical introductions on the fundamental principles to the current state-of-the-art, and are authored by pioneers and leaders in the field. Numerical simulations are presented as a powerful tool to gain insight into the physical behavior of nanophotonic systems and provide a critical complement to experimental investigations and design of devices.