You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A broad, hands on guide with detailed explanations of current methodology, relevant exercises and popular software tools.
Gene duplication has long been believed to have played a major role in the rise of biological novelty through evolution of new function and gene expression patterns. The first book to examine gene duplication across all levels of biological organization, Evolution after Gene Duplication presents a comprehensive picture of the mechanistic process by which gene duplication may have played a role in generating biodiversity. Key Features: Explores comparative genomics, genome evolution studies and analysis of multi-gene families such as Hox, globins, olfactory receptors and MHC (immune system) A complete post-genome treatment of the topic originally covered by Ohno's 1970 classic, this volume ex...
Polyploidy – whole-genome duplication (WGD) – is a fundamental driver of biodiversity with significant consequences for genome structure, organization, and evolution. Once considered a speciation process common only in plants, polyploidy is now recognized to have played a major role in the structure, gene content, and evolution of most eukaryotic genomes. In fact, the diversity of eukaryotes seems closely tied to multiple WGDs. Polyploidy generates new genomic interactions – initially resulting in “genomic and transcriptomic shock” – that must be resolved in a new polyploid lineage. This process essentially acts as a “reset” button, resulting in genomic changes that may ultim...
In the current era of complete genome sequencing, Bioinformatics and Molecular Evolution provides an up-to-date and comprehensive introduction to bioinformatics in the context of evolutionary biology. This accessible text: provides a thorough examination of sequence analysis, biological databases, pattern recognition, and applications to genomics, microarrays, and proteomics emphasizes the theoretical and statistical methods used in bioinformatics programs in a way that is accessible to biological science students places bioinformatics in the context of evolutionary biology, including population genetics, molecular evolution, molecular phylogenetics, and their applications features end-of-ch...
Sample Text
The Phylogenetic Handbook is a broad, hands on guide to theory and practice of nucleotide and protein phylogenetic analysis. This second edition includes six new chapters, covering topics such as Bayesian inference, tree topology testing and the impact of recombination on phylogenies, as well as a detailed section on molecular adaptation. The book has a stronger focus on hypothesis testing than the previous edition, with more extensive discussions on recombination analysis, detecting molecular adaptation and genealogy-based population genetics. Many chapters include elaborate practical sections, which have been updated to introduce the reader to the most recent versions of sequence analysis and phylogeny software, including BLAST, FastA, Clustal, T-coffee, Muscle, DAMBE, Tree-puzzle, Phylip, MEGA, PAUP*, IQPNNI, CONSEL, ModelTest, Prottest, PAML, HYPHY, MrBayes, BEAST, LAMARC, SplitsTree, and RDP. Many analysis tools are described by their original authors, resulting in clear explanations that constitute an ideal teaching guide for advanced-level undergraduate and graduate students.
In the years since the publication of Susumu Ohno's 1970 landmark book Evolution by gene duplication tremendous advances have been made in molecular biology and especially in genomics. Studies of genome structure and function prerequisite to testing hypotheses of genome evolution were all but impossible until recent methodological advances. This book evaluates newly generated empirical evidence as it pertains to theories of genomic evolutionary patterns and processes. Tests of hypotheses using analyses of complete genomes, interpreted in a phylogenetic context, provide evidence regarding the relative importance of gene duplication. The alternative explanation is that the evolution of regulatory elements that control the expression of and interactions among genes has been a more important force in shaping evolutionary innovation. This collection of papers will be of interest to all academic and industry researchers working in the fields of molecular biology, biotechnology, genomics and genome centers.
Estimation of Distribution Algorithms (EDAs) are a set of algorithms in the Evolutionary Computation (EC) field characterized by the use of explicit probability distributions in optimization. Contrarily to other EC techniques such as the broadly known Genetic Algorithms (GAs) in EDAs, the crossover and mutation operators are substituted by the sampling of a distribution previously learnt from the selected individuals. EDAs have experienced a high development that has transformed them into an established discipline within the EC field. This book attracts the interest of new researchers in the EC field as well as in other optimization disciplines, and that it becomes a reference for all of us working on this topic. The twelve chapters of this book can be divided into those that endeavor to set a sound theoretical basis for EDAs, those that broaden the methodology of EDAs and finally those that have an applied objective.
The availability of genomic blueprints for hundreds of species has led to a transformation in biology, encouraging the proliferation of adaptive arguments for the evolution of genomic features. This text explains why the details matter and presents a framework for how the architectural diversity of eukaryotic genomes and genes came to arise.
In this authoritative guide, expert investigators provide cutting-edge chapters dealing with modern plant systems biology approaches. This work provides the kind of detailed description and implementation advice that is crucial for getting optimal results.