Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Foundations of Modern Statistics
  • Language: en
  • Pages: 603

Foundations of Modern Statistics

This book contains contributions from the participants of the international conference “Foundations of Modern Statistics” which took place at Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Berlin, during November 6–8, 2019, and at Higher School of Economics (HSE University), Moscow, during November 30, 2019. The events were organized in honor of Professor Vladimir Spokoiny on the occasion of his 60th birthday. Vladimir Spokoiny has pioneered the field of adaptive statistical inference and contributed to a variety of its applications. His more than 30 years of research in the field of mathematical statistics had a great influence on the development of the mathematica...

Image Processing and Analysis with Graphs
  • Language: en
  • Pages: 562

Image Processing and Analysis with Graphs

  • Type: Book
  • -
  • Published: 2017-07-12
  • -
  • Publisher: CRC Press

Covering the theoretical aspects of image processing and analysis through the use of graphs in the representation and analysis of objects, Image Processing and Analysis with Graphs: Theory and Practice also demonstrates how these concepts are indispensible for the design of cutting-edge solutions for real-world applications. Explores new applications in computational photography, image and video processing, computer graphics, recognition, medical and biomedical imaging With the explosive growth in image production, in everything from digital photographs to medical scans, there has been a drastic increase in the number of applications based on digital images. This book explores how graphs—w...

Algorithmic Learning Theory
  • Language: en
  • Pages: 465

Algorithmic Learning Theory

This book constitutes the refereed proceedings of the 22nd International Conference on Algorithmic Learning Theory, ALT 2011, held in Espoo, Finland, in October 2011, co-located with the 14th International Conference on Discovery Science, DS 2011. The 28 revised full papers presented together with the abstracts of 5 invited talks were carefully reviewed and selected from numerous submissions. The papers are divided into topical sections of papers on inductive inference, regression, bandit problems, online learning, kernel and margin-based methods, intelligent agents and other learning models.

Methods for Decision Making in an Uncertain Environment
  • Language: en
  • Pages: 471

Methods for Decision Making in an Uncertain Environment

This book contains a selection of the papers presented at the XVII SIGEF Congress. It presents fuzzy logic, neural networks and other intelligent techniques applied to economic and business problems. This book is very useful for researchers and graduate students aiming to introduce themselves to the field of quantitative techniques for overcoming uncertain environments. The contributors are experienced scholars of different countries who offer real world applications of these mathematical techniques.

An Introduction to Audio Content Analysis
  • Language: en
  • Pages: 467

An Introduction to Audio Content Analysis

An Introduction to Audio Content Analysis Enables readers to understand the algorithmic analysis of musical audio signals with AI-driven approaches An Introduction to Audio Content Analysis serves as a comprehensive guide on audio content analysis explaining how signal processing and machine learning approaches can be utilized for the extraction of musical content from audio. It gives readers the algorithmic understanding to teach a computer to interpret music signals and thus allows for the design of tools for interacting with music. The work ties together topics from audio signal processing and machine learning, showing how to use audio content analysis to pick up musical characteristics a...

Deep Reinforcement Learning
  • Language: en
  • Pages: 414

Deep Reinforcement Learning

Deep reinforcement learning has attracted considerable attention recently. Impressive results have been achieved in such diverse fields as autonomous driving, game playing, molecular recombination, and robotics. In all these fields, computer programs have taught themselves to understand problems that were previously considered to be very difficult. In the game of Go, the program AlphaGo has even learned to outmatch three of the world’s leading players.Deep reinforcement learning takes its inspiration from the fields of biology and psychology. Biology has inspired the creation of artificial neural networks and deep learning, while psychology studies how animals and humans learn, and how sub...

Handbook of Pattern Recognition and Computer Vision
  • Language: en
  • Pages: 797

Handbook of Pattern Recognition and Computer Vision

Both pattern recognition and computer vision have experienced rapid progress in the last twenty-five years. This book provides the latest advances on pattern recognition and computer vision along with their many applications. It features articles written by renowned leaders in the field while topics are presented in readable form to a wide range of readers. The book is divided into five parts: basic methods in pattern recognition, basic methods in computer vision and image processing, recognition applications, life science and human identification, and systems and technology. There are eight new chapters on the latest developments in life sciences using pattern recognition as well as two new chapters on pattern recognition in remote sensing.

Statistical Inference Via Convex Optimization
  • Language: en
  • Pages: 655

Statistical Inference Via Convex Optimization

This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences. Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arise...

Deep Learning Techniques for Music Generation
  • Language: en
  • Pages: 303

Deep Learning Techniques for Music Generation

  • Type: Book
  • -
  • Published: 2019-11-08
  • -
  • Publisher: Springer

This book is a survey and analysis of how deep learning can be used to generate musical content. The authors offer a comprehensive presentation of the foundations of deep learning techniques for music generation. They also develop a conceptual framework used to classify and analyze various types of architecture, encoding models, generation strategies, and ways to control the generation. The five dimensions of this framework are: objective (the kind of musical content to be generated, e.g., melody, accompaniment); representation (the musical elements to be considered and how to encode them, e.g., chord, silence, piano roll, one-hot encoding); architecture (the structure organizing neurons, th...

Advances in Neural Information Processing Systems 17
  • Language: en
  • Pages: 1710

Advances in Neural Information Processing Systems 17

  • Type: Book
  • -
  • Published: 2005
  • -
  • Publisher: MIT Press

Papers presented at NIPS, the flagship meeting on neural computation, held in December 2004 in Vancouver.The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees--physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only twenty-five percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains the papers presented at the December, 2004 conference, held in Vancouver.