Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Affine Hecke Algebras and Quantum Symmetric Pairs
  • Language: en
  • Pages: 108

Affine Hecke Algebras and Quantum Symmetric Pairs

View the abstract.

Affine Flag Varieties and Quantum Symmetric Pairs
  • Language: en
  • Pages: 123

Affine Flag Varieties and Quantum Symmetric Pairs

The quantum groups of finite and affine type $A$ admit geometric realizations in terms of partial flag varieties of finite and affine type $A$. Recently, the quantum group associated to partial flag varieties of finite type $B/C$ is shown to be a coideal subalgebra of the quantum group of finite type $A$.

Hecke Operators and Systems of Eigenvalues on Siegel Cusp Forms
  • Language: en
  • Pages: 165

Hecke Operators and Systems of Eigenvalues on Siegel Cusp Forms

View the abstract.

Resolvent, Heat Kernel, and Torsion under Degeneration to Fibered Cusps
  • Language: en
  • Pages: 126

Resolvent, Heat Kernel, and Torsion under Degeneration to Fibered Cusps

Manifolds with fibered cusps are a class of complete non-compact Riemannian manifolds including many examples of locally symmetric spaces of rank one. We study the spectrum of the Hodge Laplacian with coefficients in a flat bundle on a closed manifold undergoing degeneration to a manifold with fibered cusps. We obtain precise asymptotics for the resolvent, the heat kernel, and the determinant of the Laplacian. Using these asymptotics we obtain a topological description of the analytic torsion on a manifold with fibered cusps in terms of the R-torsion of the underlying manifold with boundary.

Twenty-Four Hours of Local Cohomology
  • Language: en
  • Pages: 108

Twenty-Four Hours of Local Cohomology

This book is aimed to provide an introduction to local cohomology which takes cognizance of the breadth of its interactions with other areas of mathematics. It covers topics such as the number of defining equations of algebraic sets, connectedness properties of algebraic sets, connections to sheaf cohomology and to de Rham cohomology, Gröbner bases in the commutative setting as well as for $D$-modules, the Frobenius morphism and characteristic $p$ methods, finiteness properties of local cohomology modules, semigroup rings and polyhedral geometry, and hypergeometric systems arising from semigroups. The book begins with basic notions in geometry, sheaf theory, and homological algebra leading to the definition and basic properties of local cohomology. Then it develops the theory in a number of different directions, and draws connections with topology, geometry, combinatorics, and algorithmic aspects of the subject.

Local Well-Posedness and Break-Down Criterion of the Incompressible Euler Equations with Free Boundary
  • Language: en
  • Pages: 119

Local Well-Posedness and Break-Down Criterion of the Incompressible Euler Equations with Free Boundary

In this paper, we prove the local well-posedness of the free boundary problem for the incompressible Euler equations in low regularity Sobolev spaces, in which the velocity is a Lipschitz function and the free surface belongs to C 3 2 +ε. Moreover, we also present a Beale-Kato-Majda type break-down criterion of smooth solution in terms of the mean curvature of the free surface, the gradient of the velocity and Taylor sign condition.

Traffic Distributions and Independence: Permutation Invariant Random Matrices and the Three Notions of Independence
  • Language: en
  • Pages: 88

Traffic Distributions and Independence: Permutation Invariant Random Matrices and the Three Notions of Independence

Voiculescu's notion of asymptotic free independence is known for a large class of random matrices including independent unitary invariant matrices. This notion is extended for independent random matrices invariant in law by conjugation by permutation matrices. This fact leads naturally to an extension of free probability, formalized under the notions of traffic probability. The author first establishes this construction for random matrices and then defines the traffic distribution of random matrices, which is richer than the $^*$-distribution of free probability. The knowledge of the individual traffic distributions of independent permutation invariant families of matrices is sufficient to c...

C-Projective Geometry
  • Language: en
  • Pages: 137

C-Projective Geometry

The authors develop in detail the theory of (almost) c-projective geometry, a natural analogue of projective differential geometry adapted to (almost) complex manifolds. The authors realise it as a type of parabolic geometry and describe the associated Cartan or tractor connection. A Kähler manifold gives rise to a c-projective structure and this is one of the primary motivations for its study. The existence of two or more Kähler metrics underlying a given c-projective structure has many ramifications, which the authors explore in depth. As a consequence of this analysis, they prove the Yano–Obata Conjecture for complete Kähler manifolds: if such a manifold admits a one parameter group of c-projective transformations that are not affine, then it is complex projective space, equipped with a multiple of the Fubini-Study metric.

Paley-Wiener Theorems for a p-Adic Spherical Variety
  • Language: en
  • Pages: 102

Paley-Wiener Theorems for a p-Adic Spherical Variety

Let SpXq be the Schwartz space of compactly supported smooth functions on the p-adic points of a spherical variety X, and let C pXq be the space of Harish-Chandra Schwartz functions. Under assumptions on the spherical variety, which are satisfied when it is symmetric, we prove Paley–Wiener theorems for the two spaces, characterizing them in terms of their spectral transforms. As a corollary, we get relative analogs of the smooth and tempered Bernstein centers — rings of multipliers for SpXq and C pXq.WhenX “ a reductive group, our theorem for C pXq specializes to the well-known theorem of Harish-Chandra, and our theorem for SpXq corresponds to a first step — enough to recover the structure of the Bern-stein center — towards the well-known theorems of Bernstein [Ber] and Heiermann [Hei01].

Bounded Littlewood Identities
  • Language: en
  • Pages: 115

Bounded Littlewood Identities

We describe a method, based on the theory of Macdonald–Koornwinder polynomials, for proving bounded Littlewood identities. Our approach provides an alternative to Macdonald’s partial fraction technique and results in the first examples of bounded Littlewood identities for Macdonald polynomials. These identities, which take the form of decomposition formulas for Macdonald polynomials of type (R, S) in terms of ordinary Macdonald polynomials, are q, t-analogues of known branching formulas for characters of the symplectic, orthogonal and special orthogonal groups. In the classical limit, our method implies that MacMahon’s famous ex-conjecture for the generating function of symmetric plane partitions in a box follows from the identification of GL(n, R), O(n) as a Gelfand pair. As further applications, we obtain combinatorial formulas for characters of affine Lie algebras; Rogers–Ramanujan identities for affine Lie algebras, complementing recent results of Griffin et al.; and quadratic transformation formulas for Kaneko–Macdonald-type basic hypergeometric series.