You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This paper proposes a new cumulative sum (CUSUM) X chart under the assumption of uncertainty using the neutrosophic statistic (NS). The performance of the new chart is investigated in terms of the neutrosophic run length properties using the Monte Carlo simulations approach.
This thirteenth volume of Collected Papers is an eclectic tome of 88 papers in various fields of sciences, such as astronomy, biology, calculus, economics, education and administration, game theory, geometry, graph theory, information fusion, decision making, instantaneous physics, quantum physics, neutrosophic logic and set, non-Euclidean geometry, number theory, paradoxes, philosophy of science, scientific research methods, statistics, and others, structured in 17 chapters (Neutrosophic Theory and Applications; Neutrosophic Algebra; Fuzzy Soft Sets; Neutrosophic Sets; Hypersoft Sets; Neutrosophic Semigroups; Neutrosophic Graphs; Superhypergraphs; Plithogeny; Information Fusion; Statistics;...
In this paper we show that Neutrosophic Statistics is an extension of Interval Statistics, since it deals with all kinds of indeterminacy (with respect to data, inferential procedures, probability distributions, graphical representations, etc.), allows for indeterminacy reduction, and uses neutrosophic probability which is more general than imprecise and classical probabilities, and has more detailed corresponding probability density functions. Whereas Interval Statistics only deals with indeterminacy that can be represented by intervals. And we respond to the arguments of Woodall et al [1]. We show that not all indeterminacies (uncertainties) can be represented by intervals. Moreover, in some applications, we should use hesitant sets (which have less indeterminacy) instead of intervals. We redirect the authors to Plitogenic Probability and Plitogenic Statistics which are the most general forms of Multivariate Probability and Multivariate Statistics respectively (including, of course, Imprecise Probability and Interval Statistics as subclasses).
A unique approach to understanding the foundations of statistical quality control with a focus on the latest developments in nonparametric control charting methodologies Statistical Process Control (SPC) methods have a long and successful history and have revolutionized many facets of industrial production around the world. This book addresses recent developments in statistical process control bringing the modern use of computers and simulations along with theory within the reach of both the researchers and practitioners. The emphasis is on the burgeoning field of nonparametric SPC (NSPC) and the many new methodologies developed by researchers worldwide that are revolutionizing SPC. Over the...
The intensive use of automatic data acquisition system and the use of cloud computing for process monitoring have led to an increased occurrence of industrial processes that utilize statistical process control and capability analysis. These analyses are performed almost exclusively with multivariate methodologies. The aim of this Brief is to present the most important MSQC techniques developed in R language. The book is divided into two parts. The first part contains the basic R elements, an introduction to statistical procedures, and the main aspects related to Statistical Quality Control (SQC). The second part covers the construction of multivariate control charts, the calculation of Multivariate Capability Indices.
A major tool for quality control and management, statistical process control (SPC) monitors sequential processes, such as production lines and Internet traffic, to ensure that they work stably and satisfactorily. Along with covering traditional methods, Introduction to Statistical Process Control describes many recent SPC methods that improve upon
This volume is a collection of articles on reliability systems and Bayesian reliability analysis. Written by reputable researchers, the articles are self-contained and are linked with literature reviews and new research ideas. The book is dedicated to Emeritus Professor Richard E Barlow, who is well known for his pioneering research on reliability theory and Bayesian reliability analysis. Contents: System Reliability Analysis: On Regular Reliability Models (J-C Chang et al.); Bounding System Reliability (J N Hagstrom & S M Ross); Large Excesses for Finite-State Markov Chains (D Blackwell); Ageing Properties: Nonmonotonic Failure Rates and Mean Residual Life Functions (R C Gupta); The Failure...
Covering CUSUMs from an application-oriented viewpoint, while also providing the essential theoretical underpinning, this is an accessible guide for anyone with a basic statistical training. The text is aimed at quality practitioners, teachers and students of quality methodologies, and people interested in analysis of time-ordered data. Further support is available from a Web site containing CUSUM software and data sets.
In this article, a repetitive sampling control chart for the gamma distribution under the indeterminate environment has been presented. The control chart coefficients, probability of in-control, probability of out-of-control, and average run lengths have been determined under the assumption of the symmetrical property of the normal distribution using the neutrosophic interval method.
This book explores nonparametric statistical process control. It provides an up-to-date overview of nonparametric Shewhart-type univariate control charts, and reviews the recent literature on nonparametric charts, particularly multivariate schemes. Further, it discusses observations tied to the monitored population quantile, focusing on the Shewhart Sign chart. The book also addresses the issue of practically assuming the normality and the independence when a process is statistically monitored, and examines in detail change-point analysis-based distribution-free control charts designed for Phase I applications. Moreover, it introduces six distribution-free EWMA schemes for simultaneously monitoring the location and scale parameters of a univariate continuous process, and establishes two nonparametric Shewhart-type control charts based on order statistics with signaling runs-type rules. Lastly, the book proposes novel and effective method for early disease detection.