You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Sustainable Bioprocessing for a Clean and Green Environment: Concepts and Applications highlights the importance of waste to health in which waste is safely converted to value-added products via bioprocess technologies. Providing fundamental concepts and applications, this book also offers readers the methodology behind the operation of a variety of biological processes used in developing valuable products from waste. Features: Discusses synthesis and use of environmentally friendly biobased materials, such as biopolymer films and biobased plasticizers Highlights nanotechnology applications in the treatment of pollution and emphasizes the synthesis of biogenic nanomaterials for environmental remediation Describes the use of biosurfactants and emerging algal technologies, such as applications of microalgae in nutraceuticals and biofuel production Details delignification for lignocellulosic biomass This interdisciplinary book offers researchers and practitioners in chemical engineering, environmental engineering, and related fields a broad perspective on fundamentals, technologies, and environmental applications of sustainable bioprocessing.
Microbes are widely used in large-scale industrial processes due to their versatility, easy growing cultivation, kinetic potential, and the ability to generate metabolites with a wide range of potential applications to various commercial sectors, such as the food, pharmaceutical and cosmetic industries, in addition to the potential for agriculture, biomedical, and several others. Among the metabolites of greatest commercial interest, and many obtained on an industrial scale, the wide range of enzymes, biofuels, organic acids, amino acids, vitamins, biopolymers, and many other classes of metabolites. This book is intended for Bioengineers, Biologist, Biochemist, Biotechnologists, microbiologi...
The steadily increasing presence of both natural and anthropogenic pollutants in our environment poses a considerable challenge, given the recalcitrance of many of these pollutants. Microbial bioremediation presents a promising and sustainable strategy that harnesses a diverse array of microorganisms, operating either concurrently or sequentially, to eliminate or mitigate the presence of pollutants within the environment. Recent years have witnessed the application of multiomics techniques to the study of biodegradation and bioremediation, yielding an abundance of novel data that enrich our comprehension of pivotal pathways and offer fresh perspectives on the adaptability of organisms amidst shifting environmental conditions. This book brings together recent progress in microbial bioremediation, emphasizing the emerging field of multiomics technologies. It serves as a valuable reference for microbiologists exploring multiomics applications and environmental scientists seeking innovative remediation solutions.
This book is designed as a reference book and presents a systematic approach to analyze evolutionary and nature-inspired population-based search algorithms. Beginning with an introduction to optimization methods and algorithms and various enzymes, the book then moves on to provide a unified framework of process optimization for enzymes with various algorithms. The book presents current research on various applications of machine learning and discusses optimization techniques to solve real-life problems. The book compiles the different machine learning models for optimization of process parameters for production of industrially important enzymes. The production and optimization of various enz...
Bioprocess Engineering for a Green Environment examines numerous bioprocesses that are crucial to our day-to-day life, specifically the major issues surrounding the production of energy relating to biofuels and waste management. The nuance of this discussion is reflected by the text’s chapter breakdown, providing the reader with a fulsome investigation of the energy sector; the importance of third-generation fuels; and the application of micro- and macroalgae for the production of biofuels. The book also provides a detailed exploration of biocatalysts and their application to the food industry; bioplastics production; conversion of agrowaste into polysaccharides; as well as the importance ...
With the increasing awareness and concern about the dependency on fossil resources and the depletion of crude oil reserves, experts from industrial biotechnology, renewable resources, green chemistry, and biorefineries are stimulating the transition from the fossil-based to the bio-based economy. This text confronts scientific and economic challenges and strategies for making this crucial transition. Renewable Resources for Biorefineries is the work of a strongly interdisciplinary authorship, offering perspectives from biology, chemistry, biochemical engineering, materials science, and industry. This unique approach provides an opportunity for a much broader coverage of biomass and valorisat...
Process engineering can potentially provide the means to develop economically viable and environmentally friendly technologies for the production of fuel ethanol. Focusing on a key tool of process engineering, Process Synthesis for Fuel Ethanol Production is a comprehensive guide to the design and analysis of the most advanced technologies for fuel
Traditional agriculture and emerging biofuels technology produce a number of wastes and by-products, ranging from corn fiber and glycerin to animal manure, that have the potential to serve as the basis for additional sources of bioenergy that includes both liquid biofuels and biogas. Biofuels from Agricultural Wastes and Byproducts is the first book to focus solely on the production of biofuels primarily from agricultural waste and by-products. The book is divided roughly into two sections. The first section looks at liquid biofuel production from agricultural byproducts, densification of agricultural residues, and the delivery from farm to processing plant of waste and byproducts for use in biofuel production. The second section focuses on anaerobic digestion of food and animal wastes, microbial diversity, molecular and biochemical aspects of methanogensis. Together these sections solidify Biofuels from Agricultural Wastes and Byproducts as a definitive source of information on the use of agricultural waste and by-products in biofuel production.