You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Reflecting the growing volume of published work in this field, researchers will find this book an invaluable source of information on current methods and applications.
Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field. Provides a full working description of the main fundamental tools in the theorists toolbox which have proven themselves on the field of quantum magnetism in recent years. Concludes by focusing on the most important cuurent materials form an experimental viewpoint, thus linking back to the initial theoretical concepts.
The fact that magnetite (Fe304) was already known in the Greek era as a peculiar mineral is indicative of the long history of transition metal oxides as useful materials. The discovery of high-temperature superconductivity in 1986 has renewed interest in transition metal oxides. High-temperature su perconductors are all cuprates. Why is it? To answer to this question, we must understand the electronic states in the cuprates. Transition metal oxides are also familiar as magnets. They might be found stuck on the door of your kitchen refrigerator. Magnetic materials are valuable not only as magnets but as electronics materials. Manganites have received special attention recently because of thei...
The subject of this supplement to Landolt-Börnstein IV/22 Series is to present both the numerical and graphical data on the various magnetic properties of materials under pressure. Data for transition metal binary oxides MmOn [M: transition metals, O: oxygen, m, n: 1~15], MXO [M: transition metals, X: F, Cl, Br, O: oxygen] and MM’On [M: transition metals, M’: transition metals or non-transition metal elements, O: oxygen, n=2, 2.5, 3] ternary oxides are presented. As well known, the data-compiling principle in the Landolt-Bӧrrnstein series is to choose the best reliable values from many available experimental data. The present compilation is done according to this principle.
Reflecting the growing volume of published work in this field, researchers will find this book an invaluable source of information on current methods and applications.
The field of highly frustrated magnetism has developed considerably and expanded over the last 15 years. Issuing from canonical geometric frustration of interactions, it now extends over other aspects with many degrees of freedom such as magneto-elastic couplings, orbital degrees of freedom, dilution effects, and electron doping. Its is thus shown here that the concept of frustration impacts on many other fields in physics than magnetism. This book represents a state-of-the-art review aimed at a broad audience with tutorial chapters and more topical ones, encompassing solid-state chemistry, experimental and theoretical physics.
The 6th Asia Pasific Education and Science Conference (AECON ) 2020 was conducted on 19-20 December 2020, at Universitas Muhammadiyah Purwokerto, Purwokerto, Indonesia. The Theme of AECON 2020 is Empowering Human Development Through Science and Education. The goals of AECON 2020 is to establish a paradigm that emphasizes on the development of integrated education and science though the integration of different life skills in order to improve the quality of human development in education and science around Asia Pacific nations, particularly Indonesia.
The 11th International Symposium on Superconductivity was held November 16-19, 1998, in Fukuoka, Japan. Convened annually since 1988, the symposium covers the whole field of superconductivity from fundamental physics and chemistry to new applications. At the 11th Symposium, there was increased interest reported in the development of trial devices using bismuth wires and yttrium-based bulk materials. Among the presentations were those that clearly defined the development targets for next-generation yttrium-based wires and bulk materials and single-flux quantum (SFQ) circuits. Other popular topics were high-temperature superconductivity applications such as SQUIDs, microwave filters, and cryocooler-cooled magnets. With more than 600 participants from 18 countries, the symposium provided an excellent forum for exchanges of the most recent information in the field of superconductivity.
Green Energy Systems: Design, Modelling, Synthesis and Applications provides a comprehensive introduction to the design, modeling, optimization and application of predictable and alternative energy systems. With a strong focus on the fundamentals, the book provides an overview of the energy potential and conversion topology of green energy sources, the design and analysis of off grid solar and wind energy sources, and their application in effective energy management in rural communities. Sections address energy systems from solar, wind, biomass, and hybrid energy sources, and include discussions of power electronic circuit topologies for energy conversion in both off and on grid systems. The...