Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Graph-Based Semi-Supervised Learning
  • Language: en
  • Pages: 118

Graph-Based Semi-Supervised Learning

While labeled data is expensive to prepare, ever increasing amounts of unlabeled data is becoming widely available. In order to adapt to this phenomenon, several semi-supervised learning (SSL) algorithms, which learn from labeled as well as unlabeled data, have been developed. In a separate line of work, researchers have started to realize that graphs provide a natural way to represent data in a variety of domains. Graph-based SSL algorithms, which bring together these two lines of work, have been shown to outperform the state-of-the-art in many applications in speech processing, computer vision, natural language processing, and other areas of Artificial Intelligence. Recognizing this promis...

Frontiers of Engineering
  • Language: en
  • Pages: 174

Frontiers of Engineering

The practice of engineering is continually changing. Engineers today must be able not only to thrive in an environment of rapid technological change and globalization, but also to work on interdisciplinary teams. Cutting-edge research is being done at the intersections of engineering disciplines, and successful researchers and practitioners must be aware of developments and challenges in areas that may not be familiar to them. At the U.S. Frontiers of Engineer Symposium, engineers have the opportunity to learn from their peers about pioneering work being done in many areas of engineering. Frontiers of Engineering 2011: Reports on Leading-Edge Engineering from the 2011 Symposium highlights the papers presented at the event. This book covers four general topics from the 2011 symposium: additive manufacturing, semantic processing, engineering sustainable buildings, and neuro-prosthetics. The papers from these presentations provide an overview of the challenges and opportunities of these fields of inquiry, and communicate the excitement of discovery.

Multi-Objective Decision Making
  • Language: en
  • Pages: 122

Multi-Objective Decision Making

Many real-world decision problems have multiple objectives. For example, when choosing a medical treatment plan, we want to maximize the efficacy of the treatment, but also minimize the side effects. These objectives typically conflict, e.g., we can often increase the efficacy of the treatment, but at the cost of more severe side effects. In this book, we outline how to deal with multiple objectives in decision-theoretic planning and reinforcement learning algorithms. To illustrate this, we employ the popular problem classes of multi-objective Markov decision processes (MOMDPs) and multi-objective coordination graphs (MO-CoGs). First, we discuss different use cases for multi-objective decisi...

The Oxford Handbook of Computational Linguistics
  • Language: en
  • Pages: 1606

The Oxford Handbook of Computational Linguistics

Ruslan Mitkov's highly successful Oxford Handbook of Computational Linguistics has been substantially revised and expanded in this second edition. Alongside updated accounts of the topics covered in the first edition, it includes 17 new chapters on subjects such as semantic role-labelling, text-to-speech synthesis, translation technology, opinion mining and sentiment analysis, and the application of Natural Language Processing in educational and biomedical contexts, among many others. The volume is divided into four parts that examine, respectively: the linguistic fundamentals of computational linguistics; the methods and resources used, such as statistical modelling, machine learning, and corpus annotation; key language processing tasks including text segmentation, anaphora resolution, and speech recognition; and the major applications of Natural Language Processing, from machine translation to author profiling. The book will be an essential reference for researchers and students in computational linguistics and Natural Language Processing, as well as those working in related industries.

Cross-Lingual Word Embeddings
  • Language: en
  • Pages: 124

Cross-Lingual Word Embeddings

The majority of natural language processing (NLP) is English language processing, and while there is good language technology support for (standard varieties of) English, support for Albanian, Burmese, or Cebuano--and most other languages--remains limited. Being able to bridge this digital divide is important for scientific and democratic reasons but also represents an enormous growth potential. A key challenge for this to happen is learning to align basic meaning-bearing units of different languages. In this book, the authors survey and discuss recent and historical work on supervised and unsupervised learning of such alignments. Specifically, the book focuses on so-called cross-lingual wor...

Experimental Robotics
  • Language: en
  • Pages: 563

Experimental Robotics

  • Type: Book
  • -
  • Published: 2008-01-30
  • -
  • Publisher: Springer

The International Symposium on Experimental Robotics (ISER) is a series of bi-annual meetings which are organized in a rotating fashion around North America, Europe and Asia/Oceania. The goal of ISER is to provide a forum for research in robotics that focuses on the novelty of theoretical contributions validated by experimental results. This unique reference presents the latest advances in robotics, with ideas that are conceived conceptually and have been explored experimentally.

Lifelong Machine Learning, Second Edition
  • Language: en
  • Pages: 199

Lifelong Machine Learning, Second Edition

Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It makes no attempt to retain the learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn effectively with only a few examples precisely because our learning is very knowledge-driven: the knowledge learned in the past he...

Scaling Up Machine Learning
  • Language: en
  • Pages: 493

Scaling Up Machine Learning

This integrated collection covers a range of parallelization platforms, concurrent programming frameworks and machine learning settings, with case studies.

Federated Learning
  • Language: en
  • Pages: 197

Federated Learning

How is it possible to allow multiple data owners to collaboratively train and use a shared prediction model while keeping all the local training data private? Traditional machine learning approaches need to combine all data at one location, typically a data center, which may very well violate the laws on user privacy and data confidentiality. Today, many parts of the world demand that technology companies treat user data carefully according to user-privacy laws. The European Union's General Data Protection Regulation (GDPR) is a prime example. In this book, we describe how federated machine learning addresses this problem with novel solutions combining distributed machine learning, cryptography and security, and incentive mechanism design based on economic principles and game theory. We explain different types of privacy-preserving machine learning solutions and their technological backgrounds, and highlight some representative practical use cases. We show how federated learning can become the foundation of next-generation machine learning that caters to technological and societal needs for responsible AI development and application.

An Introduction to the Planning Domain Definition Language
  • Language: en
  • Pages: 178

An Introduction to the Planning Domain Definition Language

Planning is the branch of Artificial Intelligence (AI) that seeks to automate reasoning about plans, most importantly the reasoning that goes into formulating a plan to achieve a given goal in a given situation. AI planning is model-based: a planning system takes as input a description (or model) of the initial situation, the actions available to change it, and the goal condition to output a plan composed of those actions that will accomplish the goal when executed from the initial situation. The Planning Domain Definition Language (PDDL) is a formal knowledge representation language designed to express planning models. Developed by the planning research community as a means of facilitating ...