You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is an open access book. We kindly welcome to all academicians, researchers, scientists, engineers and graduate students in the related fields to submit their original research papers. Applications in engineering science that require expertise in mathematics, physics and chemistry. Its mission is to become a voice of the applied science community, addressing researchers and practitioners in different areas ranging from mathematics, physics, and chemistry to all related braches of the engineering, presenting verifiable computational methods, findings, and solutions. The Conference provided a setting for discussing recent developments in various engineering and applied science topics, incl...
Since their emergence, finite element methods have taken a place as one of the most versatile and powerful methodologies for the approximate numerical solution of Partial Differential Equations. These methods are used in incompressible fluid flow, heat, transfer, and other problems. This book provides researchers and practitioners with a concise guide to the theory and practice of least-square finite element methods, their strengths and weaknesses, established successes, and open problems.
Version 2.0. The second volume of Basic Analysis, a first course in mathematical analysis. This volume is the second semester material for a year-long sequence for advanced undergraduates or masters level students. This volume started with notes for Math 522 at University of Wisconsin-Madison, and then was heavily revised and modified for teaching Math 4153/5053 at Oklahoma State University. It covers differential calculus in several variables, line integrals, multivariable Riemann integral including a basic case of Green's Theorem, and topics on power series, ArzelĂ -Ascoli, Stone-Weierstrass, and Fourier Series. See http://www.jirka.org/ra/ Table of Contents (of this volume II): 8. Several Variables and Partial Derivatives 9. One Dimensional Integrals in Several Variables 10. Multivariable Integral 11. Functions as Limits
Partial differential equations are used in mathematical models of a huge range of real-world phenomena, from electromagnetism to financial markets. This new edition of Applied PDEs contains many new sections and exercises Including, American options, transform methods, free surface flows, linear elasticity and complex characteristics.
Fluid flows are characterized by uncertain inputs such as random initial data, material and flux coefficients, and boundary conditions. The current volume addresses the pertinent issue of efficiently computing the flow uncertainty, given this initial randomness. It collects seven original review articles that cover improved versions of the Monte Carlo method (the so-called multi-level Monte Carlo method (MLMC)), moment-based stochastic Galerkin methods and modified versions of the stochastic collocation methods that use adaptive stencil selection of the ENO-WENO type in both physical and stochastic space. The methods are also complemented by concrete applications such as flows around aerofoils and rockets, problems of aeroelasticity (fluid-structure interactions), and shallow water flows for propagating water waves. The wealth of numerical examples provide evidence on the suitability of each proposed method as well as comparisons of different approaches.
This volume presents the proceedings of the First International workshop on Parallel Scientific Computing, PARA '94, held in Lyngby, Denmark in June 1994. It reports interdisciplinary work done by mathematicians, scientists and engineers working on large-scale computational problems in discussion with computer science specialists in the field of parallel methods and the efficient exploitation of modern high-performance computing resources. The 53 full refereed papers provide a wealth of new results: an up-to-date overview on high-speed computing facilities, including different parallel and vector computers as well as workstation clusters, is given and the most important numerical algorithms, with a certain emphasis on computational linear algebra, are investigated.