You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents mathematical models and numerical simulations of crowd dynamics. The core topic is the development of a new multiscale paradigm, which bridges the microscopic and macroscopic scales taking the most from each of them for capturing the relevant clues of complexity of crowds. The background idea is indeed that most of the complex trends exhibited by crowds are due to an intrinsic interplay between individual and collective behaviors. The modeling approach promoted in this book pursues actively this intuition and profits from it for designing general mathematical structures susceptible of application also in fields different from the inspiring original one. The book considers also the two most traditional points of view: the microscopic one, in which pedestrians are tracked individually and the macroscopic one, in which pedestrians are assimilated to a continuum. Selected existing models are critically analyzed. The work is addressed to researchers and graduate students.
This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing.
In this text, the perturbation theory of non-commutatively integrable systems is revisited from the point of view of non-Abelian symmetry groups. Using a co-ordinate system intrinsic to the geometry of the symmetry, the book generalizes and geometrizes well-known estimates of Nekhoroshev (1977), in a class of systems having almost $G$-invariant Hamiltonians. These estimates are shown to have a natural interpretation in terms of momentum maps and co-adjoint orbits. The geometric framework adopted is described explicitly in examples, including the Euler-Poinsot rigid body.
The International Conference on Hyperbolic Problems: Theory, Numerics and Applications, ``HYP2008'', was held at the University of Maryland from June 9-13, 2008. This was the twelfth meeting in the bi-annual international series of HYP conferences which originated in 1986 at Saint-Etienne, France, and over the last twenty years has become one of the highest quality and most successful conference series in Applied Mathematics. This book, the second in a two-part volume, contains more than sixty articles based on contributed talks given at the conference. The articles are written by leading researchers as well as promising young scientists and cover a diverse range of multi-disciplinary topics addressing theoretical, modeling and computational issues arising under the umbrella of ``hyperbolic PDEs''. This volume will bring readers to the forefront of research in this most active and important area in applied mathematics.
The volume covers most of the topics addressed and discussed during the Workshop INdAM "Recent advances in kinetic equations and applications", which took place in Rome (Italy), from November 11th to November 15th, 2019. The volume contains results on kinetic equations for reactive and nonreactive mixtures and on collisional and noncollisional Vlasov equations for plasmas. Some contributions are devoted to the study of phase transition phenomena, kinetic problems with nontrivial boundary conditions and hierarchies of models. The book, addressed to researchers interested in the mathematical and numerical study of kinetic equations, provides an overview of recent advances in the field and future research directions.
This work develops an operator-theoretic approach to discrete frame theory on a separable Hilbert space. It is then applied to an investigation of the structural properties of systems of unitary operators on Hilbert space which are related to orthonormal wavelet theory. Also obtained are applications of frame theory to group representations, and of the theory of abstract unitary systems to frames generated by Gabor type systems.
Mathematical modelling and computer simulations are playing a crucial role in the solution of the complex problems arising in the field of biomedical sciences and provide a support to clinical and experimental practices in an interdisciplinary framework. Indeed, the development of mathematical models and efficient numerical simulation tools is of key importance when dealing with such applications. Moreover, since the parameters in biomedical models have peculiar scientific interpretations and their values are often unknown, accurate estimation techniques need to be developed for parameter identification against the measured data of observed phenomena. In the light of the new challenges brought by the biomedical applications, computational mathematics paves the way for the validation of the mathematical models and the investigation of control problems. The volume hosts high-quality selected contributions containing original research results as well as comprehensive papers and survey articles including prospective discussion focusing on some topical biomedical problems. It is addressed, but not limited to: research institutes, academia, and pharmaceutical industries.
Let $V = {\mathbb R}^{p,q}$ be the pseudo-Euclidean vector space of signature $(p,q)$, $p\ge 3$ and $W$ a module over the even Clifford algebra $C\! \ell^0 (V)$. A homogeneous quaternionic manifold $(M,Q)$ is constructed for any $\mathfrak{spin}(V)$-equivariant linear map $\Pi : \wedge^2 W \rightarrow V$. If the skew symmetric vector valued bilinear form $\Pi$ is nondegenerate then $(M,Q)$ is endowed with a canonical pseudo-Riemannian metric $g$ such that $(M,Q,g)$ is a homogeneous quaternionic pseudo-Kahler manifold. If the metric $g$ is positive definite, i.e. a Riemannian metric, then the quaternionic Kahler manifold $(M,Q,g)$ is shown to admit a simply transitive solvable group of automo...
This title applys the tools of stable homotopy theory to the study of modules over the mod $p$ Steenrod algebra $A DEGREES{*}$. More precisely, let $A$ be the dual of $A DEGREES{*}$; then we study the category $\mathsf{stable}(A)$ of unbounded cochain complexes of injective comodules over $A$, in which the morphisms are cochain homotopy classes of maps. This category is triangulated. Indeed, it is a stable homotopy category, so we can use Brown representability, Bousfield localization, Brown-Comenetz duality, and other homotopy-theoretic tools to study it. One focus of attention is the analogue of the stable homotopy groups of spheres, which in this setting is the cohomology of $A$, $\mathrm{Ext}_A DEGREES{**}(\mathbf{F}_p, \mathbf{F}_p)$. This title also has nilpotence theorems, periodicity theorems, a convergent chromatic tower, and a nu
This book is a compilation of high quality papers focussing on five major areas of active development in the wide field of differential equations: dynamical systems, infinite dimensions, global attractors and stability, computational aspects, and applications. It is a valuable reference for researchers in diverse disciplines, ranging from mathematics through physics, engineering, chemistry, nonlinear science to the life sciences