You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Data analysis and machine learning are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medical science, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and applications presented during the 31st Annual Conference of the German Classification Society (Gesellschaft für Klassifikation - GfKl). The conference was held at the Albert-Ludwigs-University in Freiburg, Germany, in March 2007.
Ruslan Mitkov's highly successful Oxford Handbook of Computational Linguistics has been substantially revised and expanded in this second edition. Alongside updated accounts of the topics covered in the first edition, it includes 17 new chapters on subjects such as semantic role-labelling, text-to-speech synthesis, translation technology, opinion mining and sentiment analysis, and the application of Natural Language Processing in educational and biomedical contexts, among many others. The volume is divided into four parts that examine, respectively: the linguistic fundamentals of computational linguistics; the methods and resources used, such as statistical modelling, machine learning, and corpus annotation; key language processing tasks including text segmentation, anaphora resolution, and speech recognition; and the major applications of Natural Language Processing, from machine translation to author profiling. The book will be an essential reference for researchers and students in computational linguistics and Natural Language Processing, as well as those working in related industries.
Computational Intelligence (CI) has emerged as a rapidly growing field over the past decade. This volume reports the exploration of CI frontiers with an emphasis on a broad spectrum of real-world applications. Such a collection of chapters has presented the state-of-the-art of CI applications in industry and will be an essential resource for professionals and researchers who wish to learn and spot the opportunities in applying CI techniques to their particular problems.
Catastrophe and Utopia studies the biographical trajectories, intellectual agendas, and major accomplishments of select Jewish intellectuals during the age of Nazism, and the partly simultaneous, partly subsequent period of incipient Stalinization. By focusing on the relatively underexplored region of Central and Eastern Europe – which was the primary centre of Jewish life prior to the Holocaust, served as the main setting of the Nazi genocide, but also had notable communities of survivors – the volume offers significant contributions to a European Jewish intellectual history of the twentieth century. Approaching specific historical experiences in their diverse local contexts, the twelve...
Argumentation mining is an application of natural language processing (NLP) that emerged a few years ago and has recently enjoyed considerable popularity, as demonstrated by a series of international workshops and by a rising number of publications at the major conferences and journals of the field. Its goals are to identify argumentation in text or dialogue; to construct representations of the constellation of claims, supporting and attacking moves (in different levels of detail); and to characterize the patterns of reasoning that appear to license the argumentation. Furthermore, recent work also addresses the difficult tasks of evaluating the persuasiveness and quality of arguments. Some o...
This book focuses on exploratory data analysis, learning of latent structures in datasets, and unscrambling of knowledge. Coverage details a broad range of methods from multivariate statistics, clustering and classification, visualization and scaling as well as from data and time series analysis. It provides new approaches for information retrieval and data mining and reports a host of challenging applications in various fields.
Nowadays knowledge-based systems research and development essentially employs two paradigms of reasoning. There are on the one hand the logic-based approaches where logic is to be understood in a rather broad sense; usually these approaches are used in symbolic domains where numerical calculations are not the core challenge. On the other hand we find approximation oriented reasoning; methods of these kinds are mainly applied in numerical domains where approximation is part of the scientific methodology itself. However, from an abstract level all these approaches do focus on similar topics and arise on various levels such as problem modeling, inference and problem solving techniques, algorithms and mathematical methods, mathematical relations between discrete and continuous properties, and are integrated in tools and applications. In accordance with the unifying vision and research interest of Michael M. Richter and in correspondence to his scientific work, this book presents 13 revised full papers advocating the integration of logic-based and approximation-oriented approaches in knowledge processing.
This book constitutes the refereed proceedings of the 26th Annual German Conference on Artificial Intelligence, KI 2003, held in Hamburg, Germany in September 2003. The 42 revised full papers presented together with 5 invited papers were carefully reviewed and selected from 90 submissions from 22 countries. The papers are organized in topical sections on logics and ontologies, cognitive modeling, reasoning methods, machine learning, neural networks, reasoning under uncertainty, planning and constraints, spatial modeling, user modeling, and agent technology.