You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Imaging mass spectrometry (MS) techniques are often utilized without an understanding of their underlying principles, making it difficult for scientists to determine when and how they can exploit MS to visualize their biomolecules of interest. Introduction to Spatial Mapping of Biomolecules by Imaging Mass Spectrometry is an essential reference to help scientists determine the status and strategies of biomolecule analysis, describing its many applications for diverse classes of biomolecules. The book builds a foundation of imaging MS knowledge by introducing ionization sources, sample preparation, visualization guidelines, molecule identification, quantification, data analysis, etc. The seco...
Tumor Immunology and Immunotherapy - Integrated Methods Part B, Volume 636 in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Chapters in this update include Quantification methods of Transforming Growth Factor beta (TGF?ß) activity in the setting of cancer immunotherapy, Decoding cancer cell death-driven immune cell recruitment: An in vivo method for site-of-vaccination analyses, Tracking and interrogating tissue-resident and recruited microglia in brain tumors, Metabolomics and lipidomics of the tumor microenvironment, Monitoring abscopal responses to radiation in mice, and much more. - Provides an array of authors who are authorities in the field - Presents comprehensiveness coverage of the topics - Includes a broad level of detail and in-depth coverage
This collection, presented to Michael Friedrich in honour of his academic career at of the Centre for the Study of Manuscript Cultures, traces key concepts that scholars associated with the Centre have developed and refined for the systematic study of manuscript cultures. At the same time, the contributions showcase the possibilities of expanding the traditional subject of ‘manuscripts’ to the larger perspective of ‘written artefacts’.
Metabolomics, the global characterisation of the small molecule complement involved in metabolism, has evolved into a powerful suite of approaches for understanding the global physiological and pathological processes occurring in biological organisms. The diversity of metabolites, the wide range of metabolic pathways and their divergent biological contexts require a range of methodological strategies and techniques. Methodologies for Metabolomics provides a comprehensive description of the newest methodological approaches in metabolomic research. The most important technologies used to identify and quantify metabolites, including nuclear magnetic resonance and mass spectrometry, are highlighted. The integration of these techniques with classical biological methods is also addressed. Furthermore, the book presents statistical and chemometric methods for evaluation of the resultant data. The broad spectrum of topics includes a vast variety of organisms, samples and diseases, ranging from in vivo metabolomics in humans and animals to in vitro analysis of tissue samples, cultured cells and biofluids.
This book covers the state-of-the-art of modern MALDI (matrix-assisted laser desorption/ionization) and its applications. New applications and improvements in the MALDI field such as biotyping, clinical diagnosis, forensic imaging, and ESI-like ion production are covered in detail. Additional topics include MS imaging, biotyping/speciation and large-scale, high-speed MS sample profiling, new methods based on MALDI or MALDI-like sample preparations, and the advantages of ESI to MALDI MS analysis. This is an ideal book for graduate students and researchers in the field of bioanalytical sciences. This book also: • Showcases new techniques and applications in MALDI MS • Demonstrates how MALDI is preferable to ESI (electrospray ionization) • Illustrates the pros and cons associated with biomarker discovery studies in clinical proteomics and the various application areas, such as cancer proteomics
The efficient analysis of polar and charged metabolites in biological samples remains a huge challenge in the field of metabolomics. Over the past years, novel mass spectrometry-based analytical tools have been developed to enable the sensitive and efficient profiling of polar ionogenic metabolites in various biological samples. This book gives the reader a comprehensive overview of these recent technological developments. Topics covered include the use of chemical labelling strategies for allowing the analysis of polar metabolites using reversed-phase liquid chromatography–mass spectrometry (RPLC-MS) and the latest methodological developments in RPLC-MS, hydrophilic interaction liquid chr...
The AACR Annual Meeting highlights the best cancer science and medicine from institutions all over the world. Attendees are invited to stretch their boundaries, form collaborations, attend sessions outside their own areas of expertise, and learn how to apply exciting new concepts, tools, and techniques to their own research. Part A contains abstracts 1-3062 accepted for the 2017 meeting.
This volume explores the latest techniques and workflow for the analysis of single cells metabolism. The chapters in this book cover topics such as the development of mass spectrometry-based single cell approaches, Pico-ESI-MS for single-cell metabolomics analysis; laser capture microdissection; ambient single cell metabolite profile (DESI and LAESI); and MALDI-MS methodology, quantum dots for quantitative cytology to study metabolic heterogeneity of single cells. Written in the highly successful Methods in Molecular Biology series format, the chapters consist of introductions to the topic, lists of the necessary materials and reagents, step-by-step guidelines, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and authoritative, Single Cell Metabolism: Methods and Protocols is a valuable resource for any researcher and scientist interested in learning more about this field.
In Plant Metabolism: Methods and Protocols, expert researchers in the field present the latest methods on quantitative analysis of plant metabolism. The methods focus on measurements, analyses and simulations of molecules, fluxes, and ultimately entire metabolic pathways and networks. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials, reagents, or software, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Plant Metabolism: Methods and Protocols seeks to benefit scientists ranging from plant biology, metabolic engineering, and biotechnology.
This volume details methods for the analyses of specific lipid classes and lipidomics analyses of cells such as lymphocytes and oocytes. Lipidomics guides readers through chapters on direct-flow and chromatographic methods (SFC, UHPLC, HPTLC, ion-mobility); derivatization methods for lipids (amines, fatty aldehydes and ketones); TOF-SIMS imaging of lipids; and characterization of lipid transfer proteins. Additional chapters also provide an authoritative overview of lipidomics strategies and a detailed review of high-resolution mass spectrometric methods are included in this volume. In Neuromethods series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your own laboratory. Concise and easy-to-use, Lipidomics aims to ensure successful results in the further study of this vital field.