Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

An Introduction to the Bootstrap
  • Language: en
  • Pages: 456

An Introduction to the Bootstrap

  • Type: Book
  • -
  • Published: 1994-05-15
  • -
  • Publisher: CRC Press

Statistics is a subject of many uses and surprisingly few effective practitioners. The traditional road to statistical knowledge is blocked, for most, by a formidable wall of mathematics. The approach in An Introduction to the Bootstrap avoids that wall. It arms scientists and engineers, as well as statisticians, with the computational techniques they need to analyze and understand complicated data sets.

Bootstrap Methods
  • Language: en
  • Pages: 337

Bootstrap Methods

A practical and accessible introduction to the bootstrap method——newly revised and updated Over the past decade, the application of bootstrap methods to new areas of study has expanded, resulting in theoretical and applied advances across various fields. Bootstrap Methods, Second Edition is a highly approachable guide to the multidisciplinary, real-world uses of bootstrapping and is ideal for readers who have a professional interest in its methods, but are without an advanced background in mathematics. Updated to reflect current techniques and the most up-to-date work on the topic, the Second Edition features: The addition of a second, extended bibliography devoted solely to publications...

Statistics
  • Language: en
  • Pages: 866

Statistics

Statistics: Unlocking the Power of Data, 3rd Edition is designed for an introductory statistics course focusing on data analysis with real-world applications. Students use simulation methods to effectively collect, analyze, and interpret data to draw conclusions. Randomization and bootstrap interval methods introduce the fundamentals of statistical inference, bringing concepts to life through authentically relevant examples. More traditional methods like t-tests, chi-square tests, etc. are introduced after students have developed a strong intuitive understanding of inference through randomization methods. While any popular statistical software package may be used, the authors have created StatKey to perform simulations using data sets and examples from the text. A variety of videos, activities, and a modular chapter on probability are adaptable to many classroom formats and approaches.

Bootstrap Methods and Their Application
  • Language: en
  • Pages: 606

Bootstrap Methods and Their Application

Disk contains the library functions and documentation for use with Splus for Windows.

Bootstrapping
  • Language: en
  • Pages: 128

Bootstrapping

Bootstrapping is a conceptually simple statistical technique to increase the quality of estimates, conduct robustness checks and compute standard errors for virtually any statistic. This book provides an intelligible and compact introduction for students, scientists and practitioners. It not only gives a clear explanation of the underlying concepts but also demonstrates the application of bootstrapping using Python and Stata.

Exploring the Limits of Bootstrap
  • Language: en
  • Pages: 462

Exploring the Limits of Bootstrap

Explores the application of bootstrap to problems that place unusual demands on the method. The bootstrap method, introduced by Bradley Efron in 1973, is a nonparametric technique for inferring the distribution of a statistic derived from a sample. Most of the papers were presented at a special meeting sponsored by the Institute of Mathematical Statistics and the Interface Foundation in May, 1990.

Randomization, Bootstrap and Monte Carlo Methods in Biology
  • Language: en
  • Pages: 468

Randomization, Bootstrap and Monte Carlo Methods in Biology

  • Type: Book
  • -
  • Published: 2018-10-03
  • -
  • Publisher: CRC Press

Modern computer-intensive statistical methods play a key role in solving many problems across a wide range of scientific disciplines. This new edition of the bestselling Randomization, Bootstrap and Monte Carlo Methods in Biology illustrates the value of a number of these methods with an emphasis on biological applications. This textbook focuses on three related areas in computational statistics: randomization, bootstrapping, and Monte Carlo methods of inference. The author emphasizes the sampling approach within randomization testing and confidence intervals. Similar to randomization, the book shows how bootstrapping, or resampling, can be used for confidence intervals and tests of signific...

Bootstrapping
  • Language: en
  • Pages: 84

Bootstrapping

  • Type: Book
  • -
  • Published: 1993-08-09
  • -
  • Publisher: SAGE

This book is. . . clear and well-written. . . anyone with any interest in the basis of quantitative analysis simply must read this book. . . . well-written, with a wealth of explanation. . . --Dougal Hutchison in Educational Research Using real data examples, this volume shows how to apply bootstrapping when the underlying sampling distribution of a statistic cannot be assumed normal, as well as when the sampling distribution has no analytic solution. In addition, it discusses the advantages and limitations of four bootstrap confidence interval methods--normal approximation, percentile, bias-corrected percentile, and percentile-t. The book concludes with a convenient summary of how to apply this computer-intensive methodology using various available software packages.

The Bootstrap and Edgeworth Expansion
  • Language: en
  • Pages: 359

The Bootstrap and Edgeworth Expansion

This monograph addresses two quite different topics, each being able to shed light on the other. Firstly, it lays the foundation for a particular view of the bootstrap. Secondly, it gives an account of Edgeworth expansion. The first two chapters deal with the bootstrap and Edgeworth expansion respectively, while chapters 3 and 4 bring these two themes together, using Edgeworth expansion to explore and develop the properties of the bootstrap. The book is aimed at graduate level for those with some exposure to the methods of theoretical statistics. However, technical details are delayed until the last chapter such that mathematically able readers without knowledge of the rigorous theory of probability will have no trouble understanding most of the book.

Permutation Tests
  • Language: en
  • Pages: 238

Permutation Tests

A step-by-step guide to the application of permutation tests in biology, medicine, science, and engineering. The intuitive and informal style makes this manual ideally suitable for students and researchers approaching these methods for the first time. In particular, it shows how to handle the problems of missing and censored data, nonresponders, after-the-fact covariates, and outliers.