Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Interface and Transport Dynamics
  • Language: en
  • Pages: 450

Interface and Transport Dynamics

An overview of the recent progress of research in computational physics and materials science. Particular topics are modelling of traffic flow and complex multi-scale solidification phenomena. The sections introduce novel research results of experts from a considerable diversity of disciplines such as physics, mathematical and computational modelling, nonlinear dynamics, materials sciences, statistical mechanics and foundry technique. The book intends to create a comprehensive and coherent image of the current research status and illustrates new simulation results of transport and interface dynamics by high resolution graphics. Various possible perspectives are formulated for future activities. Special emphasis is laid on exchanging experiences concerning numerical tools and on the bridging of the scales as is necessary in a variety of scientific and engineering applications. An interesting possibility along this line was the coupling of different computational approaches leading to hybrid simulations.

Computational Materials Engineering
  • Language: en
  • Pages: 359

Computational Materials Engineering

Computational Materials Engineering is an advanced introduction to the computer-aided modeling of essential material properties and behavior, including the physical, thermal and chemical parameters, as well as the mathematical tools used to perform simulations. Its emphasis will be on crystalline materials, which includes all metals. The basis of Computational Materials Engineering allows scientists and engineers to create virtual simulations of material behavior and properties, to better understand how a particular material works and performs and then use that knowledge to design improvements for particular material applications. The text displays knowledge of software designers, materials ...

Analysis, Modeling and Simulation of Multiscale Problems
  • Language: en
  • Pages: 704

Analysis, Modeling and Simulation of Multiscale Problems

This book reports recent mathematical developments in the Programme "Analysis, Modeling and Simulation of Multiscale Problems", which started as a German research initiative in 2006. Multiscale problems occur in many fields of science, such as microstructures in materials, sharp-interface models, many-particle systems and motions on different spatial and temporal scales in quantum mechanics or in molecular dynamics. The book presents current mathematical foundations of modeling, and proposes efficient numerical treatment.

Aluminium Alloys
  • Language: en
  • Pages: 2580

Aluminium Alloys

Aluminium is a well established modern lightweight engineering and functional material with a unique combination of specific properties like strengh, formability, durability, conductivity, corrosion resistance, etc. It is present in many intelligent solutions in established markets like building, transport, packaging, printing, and many others, in our fast moving modern society. The various aluminium alloys can be processed quite efficiently in large quantities by conventional fabrication routes, as well as in special sophisticated forms and material combinations for highly innovative high–tec solutions and applications. This book contains latest information about all these aspects in form...

Phase-field Modeling of Phase Changes and Mechanical Stresses in Electrode Particles of Secondary Batteries
  • Language: en
  • Pages: 224

Phase-field Modeling of Phase Changes and Mechanical Stresses in Electrode Particles of Secondary Batteries

Most storage materials exhibit phase changes, which cause stresses and, thus, lead to damage of the electrode particles. In this work, a phase-field model for the cathode material NaxFePO4 of Na-ion batteries is studied to understand phase changes and stress evolution. Furthermore, we study the particle size and SOC dependent miscibility gap of the nanoscale insertion materials. Finally, we introduce the nonlocal species concentration theory, and show how the nonlocality influences the results.

Diagenetic controls on fluid flow and mechanical properties in Rotliegend reservoir sandstones
  • Language: en
  • Pages: 188

Diagenetic controls on fluid flow and mechanical properties in Rotliegend reservoir sandstones

Reservoir quality of Rotliegend sandstones is mainly controlled by their permeability, and porosity, and their mechanical properties. Thus, diagenetic porosity-reducing processes need to be understood to evaluate reservoir quality and geotechnical properties in sandstones. Best reservoir qualities are achieved in mature sandstones with large amounts of quartz cementation. The relative length of grain-contacts compared to the respective grain diameter is identified as proxy for rock strength.

Understanding Degradation Phenomena in Solid-Oxide Fuel-Cell Anodes by Phase-Field Modeling and Analytics
  • Language: en
  • Pages: 298

Understanding Degradation Phenomena in Solid-Oxide Fuel-Cell Anodes by Phase-Field Modeling and Analytics

The current work analyzes degradation effects in solid-oxide fuel cell anodes with the phase-field method. A model extension for interface diffusion is formulated and calibrated. Large-scale 3D-simulations provide interesting insights into phenomena at the microscale which are responsible for the degradation

Phase Transformations in Multicomponent Melts
  • Language: en
  • Pages: 435

Phase Transformations in Multicomponent Melts

Bringing together the concerted efforts of the multicomponent materials community in one decisive reference work, this handbook covers all the important aspects from fundamentals to applications: thermodynamics, microscopic processes, solidification, simulation and modeling. As such, it provides a vital understanding of melt and solidification processes, treating all simulation techniques for continuous and discrete systems, such as molecular dynamics, Monte Carlo, and finite elements calculations.

Sustained Simulation Performance 2018 and 2019
  • Language: en
  • Pages: 230

Sustained Simulation Performance 2018 and 2019

This book presents the state of the art in High Performance Computing on modern supercomputer architectures. It addresses trends in hardware and software development in general, as well as the future of High Performance Computing systems and heterogeneous architectures. The contributions cover a broad range of topics, from improved system management to Computational Fluid Dynamics, High Performance Data Analytics, and novel mathematical approaches for large-scale systems. In addition, they explore innovative fields like coupled multi-physics and multi-scale simulations. All contributions are based on selected papers presented at the 26th and 28th Workshops on Sustained Simulation Performance, held at the High Performance Computing Center, University of Stuttgart, Germany, in October 2017 and 2018, and the 27th and 29th Workshops on Sustained Simulation Performance, held at the Cyberscience Center, Tohoku University, Japan, in March 2018 and 2019.

Phase-field modeling of microstructural pattern formation in alloys and geological veins
  • Language: en
  • Pages: 240

Phase-field modeling of microstructural pattern formation in alloys and geological veins

With the advent of high performance computing, the application areas of the phase-field method, traditionally used to numerically model the phase transformation in metals and alloys, have now spanned into geoscience. A systematic investigation of the two distinct scientific problems in consideration suggest a strong influence of interfacial energy on the natural and induced pattern formation in diffusion-controlled regime.