You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book describes the exciting biology and chemistry of strigolactones. Outgrowth of shoot branches? Development of lateral roots? Interactions with beneficial microorganisms? Avoiding parasitic plants? Responding to drought conditions? These important “decisions” that plants make are all regulated by a group of hormones called strigolactones. The latest research has yielded a number of new biological concepts, such as a redefinition of plant hormones and their crosstalk, new functional diversity of receptors, hormonal “smoke and mirrors,” core signaling pathways, and even phloem transport of receptor proteins. Another important aspect of strigolactones is the related synthetic che...
Plants are members of complex communities and interact both with antagonists and beneficial organisms. An important question in plant defense-signaling research is how plants integrate signals induced by pathogens, insect herbivores and beneficial microbes into the most appropriate adaptive response. Molecular and genomic tools are now being used to uncover the complexity of the induced defense signaling networks that have evolved during the arms races between plants and the other organisms with which they intimately interact. To understand the functioning of the complex defense signaling network in nature, molecular biologists and ecologists have joined forces to place molecular mechanisms of induced plant defenses in an ecological perspective. In this Research Topic, we aim to provide an on-line, open-access snapshot of the current state of the art of the field of induced plant responses to microbes and insects, with a special focus on the translation of molecular mechanisms to ecology and vice versa.
Abiotic stresses are the major cause that limits productivity of crop plants worldwide. Plants have developed intricate machinery to respond and adapt over these adverse environmental conditions both at physiological and molecular levels. Due to increasing problems of abiotic stresses, plant biotechnologists and breeders need to employ new approaches to improve abiotic stress tolerance in crop plants. Although current research has divulged several key genes, gene regulatory networks and quantitative trait loci that mediate plant responses to various abiotic stresses, the comprehensive understanding of this complex trait is still not available. This e-book is focused on molecular genetics and genomics approaches to understand the plant response/adaptation to various abiotic stresses. It includes different types of articles (original research, method, opinion and review) that provide current insights into different aspects of plant responses and adaptation to abiotic stresses.
This book is a printed edition of the Special Issue "Biotic and Abiotic Stress Responses in Crop Plants" that was published in Agronomy
Arbuscular mycorrhizal fungi (AMF) are considered enormously important in contemporary agriculture and horticulture due to their important role in nutrient, biotic and abiotic stress management apart from enhancing plant health and soil fertility. AMF is one of the important fungi for soil aggregation, which helps in drought management. Hence this book brings out an exclusive text on AMF for sustainable rice production. It provides comprehensive up-to-date knowledge on AMF in rice cultivation, and for sustainable rice production in different ecologies without damaging the environment. Salient Features: 1. Covers all the aspects of AMF in rice cultivation from diversity to applications 2. Documents AMF diversity based on metagenomic approach in rice ecosystems 3. Explains the importance of AMF in soil aggregation, which helps in drought management 4. Provides new unraveling knowledge about AMF for sustainable rice production in different ecologies without damaging the environment 5. Discusses the AMF role in induction of resistance in rice plants against some pests.
Mycorrhizal fungi are microbial engines which improve plant vigor and soil quality. They play a crucial role in plant nutrient uptake, water relations, ecosystem establishment, plant diversity, and the productivity of plants. Scientific research involves multidisciplinary approaches to understand the adaptation of mycorrhizae to the rhizosphere, mechanism of root colonization, effect on plant physiology and growth, biofertilization, plant resistance and biocontrol of plant pathogens. This book discusses and goes into detail on a number of topics: the molecular basis of nutrient exchange between arbuscular mycorrhizal (AM) fungi and host plants; the role of AM fungi in disease protection, all...
Root Development is an extremely exciting new title in Blackwell Publishing's Annual Plant Reviews Series (Series Editor Profesor Jeremy Roberts). The book consists of contributions from author groups based at many of the World's formeost laboratories working in the root development area. The book's editor Tom Beeckman, himself very well known and respected for his work in this area, has drawn together an exceptional set of core cutting edge reviews of the subject, providing a state of the art reference tool for all those researching in this area.
The rhizosphere, the soil volume, which is directly affected by root activity, is an important hot spot for a multitude of biotic and abiotic processes. Carbon transfer from plants to microorganisms and to soil takes place in these small volumes around living roots, creating chemical gradients and zones of microbial activity over distinct temporal and spatial scales. Hydraulic and biogeochemical properties of the rhizosphere and the formation of complex three-dimensional structures such as micro- and macroaggreates in turn, result from complex feedbacks between physical, chemical and biological processes. The aim of this Research Topic is to advance our understanding of rhizosphere interactions by collating 16 original contributions across disciplines, including original research, reviews and specific methods on the processes taking place in the rhizosphere, to shed new light on one of the most important interfaces for the diversity of life on earth.