You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Power series provide a technique for constructing examples of commutative rings. In this book, the authors describe this technique and use it to analyse properties of commutative rings and their spectra. This book presents results obtained using this approach. The authors put these results in perspective; often the proofs of properties of classical examples are simplified. The book will serve as a helpful resource for researchers working in commutative algebra.
This volume contains the combined Proceedings of the Second International Meeting on Commutative Algebra and Related Areas (SIMCARA) held from July 22–26, 2019, at the Universidade de São Paulo, São Carlos, Brazil, and the AMS Special Session on Commutative Algebra, held from September 14–15, 2019, at the University of Wisconsin-Madison, Wisconsin. These two meetings celebrated the combined 150th birthday of Roger and Sylvia Wiegand. The Wiegands have been a fixture in the commutative algebra community, as well as the wider mathematical community, for over 40 years. Articles in this volume cover various areas of factorization theory, homological algebra, ideal theory, representation theory, homological rigidity, maximal Cohen-Macaulay modules, and the behavior of prime spectra under completion, as well as some topics in related fields. The volume itself bears evidence that the area of commutative algebra is a vibrant one and highlights the influence of the Wiegands on generations of researchers. It will be useful to researchers and graduate students.
This book surveys fundamental current topics in these two areas of research, emphasising the lively interaction between them. Volume 2 focuses on the most recent research.
This book is an introduction to residuated structures, viewed as a common thread binding together algebra and logic. The framework includes well-studied structures from classical abstract algebra such as lattice-ordered groups and ideals of rings, as well as structures serving as algebraic semantics for substructural and other non-classical logics. Crucially, classes of these structures are studied both algebraically, yielding a rich structure theory along the lines of Conrad's program for lattice-ordered groups, and algorithmically, via analytic sequent or hypersequent calculi. These perspectives are related using a natural notion of equivalence for consequence relations that provides a bridge offering benefits to both sides. Algorithmic methods are used to establish properties like decidability, amalgamation, and generation by subclasses, while new insights into logical systems are obtained by studying associated classes of structures. The book is designed to serve the purposes of novices and experts alike. The first three chapters provide a gentle introduction to the subject, while subsequent chapters provide a state-of-the-art account of recent developments in the field.
"Presents the proceedings of the recently held Third International Conference on Commutative Ring Theory in Fez, Morocco. Details the latest developments in commutative algebra and related areas-featuring 26 original research articles and six survey articles on fundamental topics of current interest. Examines wide-ranging developments in commutative algebra, together with connections to algebraic number theory and algebraic geometry."
This volume, a tribute to the work of Robert Gilmer, consists of twenty-four articles authored by his most prominent students and followers. These articles combine surveys of past work by Gilmer and others, recent results which have never before seen print, open problems, and extensive bibliographies. The entire collection provides an in-depth overview of the topics of research in a significant and large area of commutative algebra.
Features a stimulating selection of papers on abelian groups, commutative and noncommutative rings and their modules, and topological groups. Investigates currently popular topics such as Butler groups and almost completely decomposable groups.
Packed with contributions from international experts, Commutative Algebra: Geometric, Homological, Combinatorial, and Computational Aspects features new research results that borrow methods from neighboring fields such as combinatorics, homological algebra, polyhedral geometry, symbolic computation, and topology. This book consists of articles pres
This book is the tenth in a series of volumes whose aim is to provide a complete proof of the classification theorem for the finite simple groups based on a fairly short and clearly enumerated set of background results. Specifically, this book completes our identification of the simple groups of bicharacteristic type begun in the ninth volume of the series (see SURV/40.9). This is a fascinating set of simple groups which have properties in common with matrix groups (or, more generally, groups of Lie type) defined both over fields of characteristic 2 and over fields of characteristic 3. This set includes 11 of the celebrated 26 sporadic simple groups along with several of their large simple subgroups. Together with SURV/40.9, this volume provides the first unified treatment of this class of simple groups.