You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Since publication of the National Research Council (NRC) reports on chemistry in 1985 and chemical engineering in 1988,1,2 dramatic advances in information technology (IT) have totally changed these communities. During this period, the chemical enterprise and information technology have enjoyed both a remarkably productive and mutually supportive set of advances. These synergies sparked unprecedented growth in the capability and productivity of both fields including the definition of entirely new areas of the chemical enterprise. The chemical enterprise provided information technology with device fabrication processes, new materials, data, models, methods, and (most importantly) people. In t...
The report assesses the current state of chemistry and chemical engineering within the context of drug discovery, disease diagnosis, and disease prevention. Also addressed are chemical and chemical engineering challenges in pharmaceutical synthesis, delivery, and manufacture.
The report assesses the current state of chemistry and chemical engineering at the interface with materials science and identifies challenges for research. Recent advances are blurring the distinction between chemistry and materials science and are enabling the creation of new materials that, to date, have only been predicted by theory. These advances include a greater ability to construct materials from molecular components, to design materials for a desired function, to understand molecular "self-assembly, and to improve processes by which the material is "engineered" into the final product.
The report assesses the current state of chemistry and chemical engineering at the interface with environmental science, examines its interactions with related areas of science and technology, and identifies challenges and opportunities for research. The report also identifies important contributions that have been made by the chemical sciences toward solving environmental problems, and emphasizes the opportunities for chemists and chemical engineers to make future contributions toward understanding and improving the environment.
Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scopeâ€"into biology, nanotechnology, materials science, computation, and advanced methods of process systems engineering and controlâ€"so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€"from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between rese...
This is the first report of seven in the Challenges for the Chemical Sciences in the 21st Century series. The report is based on discussions and presentations at a workshop, and is intended to help scientists and funding agencies set short- and long-term research agendas. It focuses on the challenges for chemists and chemical engineers with respect to threat reduction, preparation, situational awareness, and threat neutralization and remediation
Initially, the Challenges for the Chemical Sciences in the 21st Century project was designed to be a series of five workshops encompassing the main technological areas to which the chemical sciences contribute. After the events of September 11, 2001, it was recognized that chemists and chemical engineers have always contributed significantly to our nation's defense capabilities and that now they will play an increasingly important part in homeland security. Thus, the National Security and Homeland Defense Workshop was arranged on an emergency basis. It is hoped that the presentations and discussions at the workshop found in this report will help chemical scientists understand how their research can be applied to national security problems and will guide them in new directions to ultimately enhance the safety of U.S. civilians and military personnel.
This book, also based on a workshop, assesses the current state of chemistry and chemical engineering at the interface with novel and existing forms of energy and transportation systems. The book also identifies challenges for the chemical sciences in helping to meet the increased demand for more energy, and opportunities for research in energy technologies and in the development of transportation vehicles.
Environmental engineers support the well-being of people and the planet in areas where the two intersect. Over the decades the field has improved countless lives through innovative systems for delivering water, treating waste, and preventing and remediating pollution in air, water, and soil. These achievements are a testament to the multidisciplinary, pragmatic, systems-oriented approach that characterizes environmental engineering. Environmental Engineering for the 21st Century: Addressing Grand Challenges outlines the crucial role for environmental engineers in this period of dramatic growth and change. The report identifies five pressing challenges of the 21st century that environmental engineers are uniquely poised to help advance: sustainably supply food, water, and energy; curb climate change and adapt to its impacts; design a future without pollution and waste; create efficient, healthy, resilient cities; and foster informed decisions and actions.