You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
This book contains the papers that were presented at the XIIIth International Symposium on Hearing (ISH), which was held in Dourdan, France, between August 24 and 29, 2003. From its first edition in 1969, the Symposium has had a distinguished tradition of bringing together auditory psychologists and physiologists. Hearing science now also includes computational modeling and brain imaging, and this is reflected in the papers collected. The rich interactions between participants during the meeting were yet another indication of the appositeness of the original idea to confront approaches around shared scientific issues. A total of 62 solicited papers are included, organized into 12 broad thema...
Electrocochleography (ECochG) is an approach for objective measurements of physiologic responses from the inner ear. Measurements have classically been made from electrodes placed in the outer ear canal, on the tympanic membrane, the round window niche, or inside the cochlea. Recent innovations have led to ECochG being used for exciting new purposes that drive clinical practice and contribute to the basic understanding of inner ear physiology. Cochlear implant recording electrodes can monitor the preservation of residual, low-frequency acoustic hearing, both in the operating room and post-operatively. ECochG measurements can quantify differential effects of inner ear surgery or other manipulations on vestibular and auditory physiology simultaneously. Various attributes of cognitive neuroscience can be addressed with ECochG measurements from the auditory periphery. These advances in ECochG provide a way to understand a variety of inner ear diseases and are likely to be of value to many groups in their own clinical and basic research.
Volume 1: The Ear (edited by Paul Fuchs) Volume 2: The Auditory Brain (edited by Alan Palmer and Adrian Rees) Volume 3: Hearing (edited by Chris Plack) Auditory science is one of the fastest growing areas of biomedical research. There are now around 10,000 researchers in auditory science, and ten times that number working in allied professions. This growth is attributable to several major developments: Research on the inner ear has shown that elaborate systems of mechanical, transduction and neural processes serve to improve sensitivity, sharpen frequency tuning, and modulate response of the ear to sound. Most recently, the molecular machinery underlying these phenomena has been explored and described in detail. The development, maintenance, and repair of the ear are also subjects of contemporary interest at the molecular level, as is the genetics of hearing disorders due to cochlear malfunctions.
Mechanics of Biological Systems and Materials, Volume 6 of the Proceedings of the 2016 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the sixth volume of ten from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Soft Material Mechanics Bio-Engineering and Biomechanics Cells Mechanics Biomaterials and Mechanics Across Multiple Scales Biomechanics Biotechnologies Traumatic Brain Injury Mechanics
There seems little doubt that from the earliest evolutionary beginnings, inhibition has been a fundamental feature of neuronal circuits - even the simplest life forms sense and interact with their environment, orienting or approaching positive stimuli while avoiding aversive stimuli. This requires internal signals that both drive and suppress behavior. Traditional descriptions of inhibition sometimes limit its role to the suppression of action potential generation. This view fails to capture the vast breadth of inhibitory function now known to exist in neural circuits. A modern perspective on inhibitory signaling comprises a multitude of mechanisms. For example, inhibition can act via a shun...
Nothing provided
Spatial-hearing ability has been found to vary widely across listeners. A survey of the existing auditory-space perception literature suggests that three main types of factors may account for this variability: - physical factors, e.g., acoustical characteristics related to sound-localization cues, - perceptual factors, e.g., sensory/cognitive processing, perceptual learning, multisensory interactions, - and methodological factors, e.g., differences in stimulus presentation methods across studies. However, the extent to which these–and perhaps other, still unidentified—factors actually contribute to the observed variability in spatial hearing across individuals with normal hearing or with...
None