You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Stream processing is a novel distributed computing paradigm that supports the gathering, processing and analysis of high-volume, heterogeneous, continuous data streams, to extract insights and actionable results in real time. This comprehensive, hands-on guide combining the fundamental building blocks and emerging research in stream processing is ideal for application designers, system builders, analytic developers, as well as students and researchers in the field. This book introduces the key components of the stream computing paradigm, including the distributed system infrastructure, the programming model, design patterns and streaming analytics. The explanation of the underlying theoretical principles, illustrative examples and implementations using the IBM InfoSphere Streams SPL language and real-world case studies provide students and practitioners with a comprehensive understanding of such applications and the middleware that supports them.
An important merit of the MPEG-4 video standard is that it not only provided tools and algorithms for enhancing the compression efficiency of existing MPEG-2 and H.263 standards but also contributed key innovative solutions for new multimedia applications such as real-time video streaming to PCs and cell phones over Internet and wireless networks, interactive services, and multimedia access. Many of these solutions are currently used in practice or have been important stepping-stones for new standards and technologies. In this book, we do not aim at providing a complete reference for MPEG-4 video as many excellent references on the topic already exist. Instead, we focus on three topics that ...
Exchange of information and innovative ideas are necessary to accelerate the development of technology. With advent of technology, intelligent and soft computing techniques came into existence with a wide scope of implementation in engineering sciences. Keeping this ideology in preference, this book includes the insights that reflect the ‘Advances in Computer and Computational Sciences’ from upcoming researchers and leading academicians across the globe. It contains high-quality peer-reviewed papers of ‘International Conference on Computer, Communication and Computational Sciences (ICCCCS 2016), held during 12-13 August, 2016 in Ajmer, India'. These papers are arranged in the form of c...
The last few years have witnessed fast development on dictionary learning approaches for a set of visual computing tasks, largely due to their utilization in developing new techniques based on sparse representation. Compared with conventional techniques employing manually defined dictionaries, such as Fourier Transform and Wavelet Transform, dictionary learning aims at obtaining a dictionary adaptively from the data so as to support optimal sparse representation of the data. In contrast to conventional clustering algorithms like K-means, where a data point is associated with only one cluster center, in a dictionary-based representation, a data point can be associated with a small set of dict...
The book is based on the material originally developed for the course on Virtual Reality, which the author was teaching at Tampere University of Technology, as well as course on Virtual Environments that the author had prepared for the University for Advancing Studies at Tempe, Arizona. This original purpose has influenced the structure of this book as well as the depth to which we explore the presented concepts. Therefore, our intention in this book is to give an introduction into the important issues regarding a series of related concepts of Virtual Reality, Augmented Reality, and Virtual Environments. We do not attempt to go into any of these issues in depth but rather outline general pri...
Video context analysis is an active and vibrant research area, which provides means for extracting, analyzing and understanding behavior of a single target and multiple targets. Over the last few decades, computer vision researchers have been working to improve the accuracy and robustness of algorithms to analyse the context of a video automatically. In general, the research work in this area can be categorized into three major topics: 1) counting number of people in the scene 2) tracking individuals in a crowd and 3) understanding behavior of a single target or multiple targets in the scene. This book focusses on tracking individual targets and detecting abnormal behavior of a crowd in a co...
Micro-videos, a new form of user-generated contents, have been spreading widely across various social platforms, such as Vine, Kuaishou, and Tik Tok. Different from traditional long videos, micro-videos are usually recorded by smart mobile devices at any place within a few seconds. Due to its brevity and low bandwidth cost, micro-videos are gaining increasing user enthusiasm. The blossoming of micro-videos opens the door to the possibility of many promising applications, ranging from network content caching to online advertising. Thus, it is highly desirable to develop an effective scheme for the high-order micro-video understanding. Micro-video understanding is, however, non-trivial due to ...
This lecture describes the author's approach to the representation of color spaces and their use for color image processing. The lecture starts with a precise formulation of the space of physical stimuli (light). The model includes both continuous spectra and monochromatic spectra in the form of Dirac deltas. The spectral densities are considered to be functions of a continuous wavelength variable. This leads into the formulation of color space as a three-dimensional vector space, with all the associated structure. The approach is to start with the axioms of color matching for normal human viewers, often called Grassmann's laws, and developing the resulting vector space formulation. However,...
Image fusion in remote sensing or pansharpening involves fusing spatial (panchromatic) and spectral (multispectral) images that are captured by different sensors on satellites. This book addresses image fusion approaches for remote sensing applications. Both conventional and deep learning approaches are covered. First, the conventional approaches to image fusion in remote sensing are discussed. These approaches include component substitution, multi-resolution, and model-based algorithms. Then, the recently developed deep learning approaches involving single-objective and multi-objective loss functions are discussed. Experimental results are provided comparing conventional and deep learning approaches in terms of both low-resolution and full-resolution objective metrics that are commonly used in remote sensing. The book is concluded by stating anticipated future trends in pansharpening or image fusion in remote sensing.
Earth observation is the field of science concerned with the problem of monitoring and modeling the processes on the Earth surface and their interaction with the atmosphere. The Earth is continuously monitored with advanced optical and radar sensors. The images are analyzed and processed to deliver useful products to individual users, agencies and public administrations. To deal with these problems, remote sensing image processing is nowadays a mature research area, and the techniques developed in the field allow many real-life applications with great societal value. For instance, urban monitoring, fire detection or flood prediction can have a great impact on economical and environmental iss...