You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Biofuels and Biorefining: Volume Two: Intensified Processes and Biorefineries considers intensification and optimization processes for biofuels and biomass-derived products in single and biorefinery schemes. Chapters cover production processes for liquid biofuels, introducing all feasible intensification alternatives for each process, process intensification methods for the production of value-added products, the importance of detailed CFD-based studies, controllability studies, strategies for risk analysis in intensified processes, the concept of biorefinery for the co-production of biofuels/biomass derived value-added products, and the importance of process intensification in the biorefine...
Biofuels and Biorefining: Volume One: Current Technologies for Biomass Conversion considers the conventional processes for biofuels and biomass-derived products in single and biorefinery schemes. Sections address the fundamentals of the transformation of biomass into fuels and products, including a discussion of current and future scenarios, potential raw materials that can be used, the main processing technologies and their commercial potential, and a description of the concept of biorefinery and the opportunities offered by this approach. Each chapter is supported by industry case studies covering the development of each product, fuel type, and biorefinery. This book provides an integrated...
Optimization is an area in constant evolution. The search for robust optimization techniques to deal with the highly non-convex models that represent the systems related to Chemical Engineering has led to important advances in the area. The need for developing economically feasible processes which are simultaneously environmentally friendly, safe, and controllable requires for adequate optimization strategies. Moreover, finding a global optimum is still a challenge for a diversity of cases. Thus, this book presents a compilation of classic and emerging optimization techniques, focusing on their application to systems related to the Chemical Engineering. The book shows the applications of classic mathematical programming, metaheuristic optimization methods and machine learning-based strategies. The analysis of the described techniques allows the reader identifying the advantages and disadvantages of each approach. Moreover, the book will discuss the perspectives for future developments on the area.
Production Processes of Renewable Aviation Fuel: Present Technologies and Future Trends presents the available production processes for renewable aviation fuel, including the application of intensification and energy integration strategies. Despite biofuels have gained a lot of interest in the last years, renewable aviation fuel is one of the less studied. In the last ten years, there has been an incredible growth in the number of patents and articles related with its production processes. Several transformation pathways have been proposed, and new ones have been outlined. The book contains the main information about the production processes of renewable aviation fuel, considering internatio...
Pinch Technology explains the principles of process integration, the use of pinch technology as well as energy recycling in oil, gas, petrochemical and industrial processes. It gives an complete overview of all relevant and similar references in the fi eld of energy recovery in oil, gas and petrochemicals.
A comprehensive overview of current developments and applications in biofuels production Process Systems Engineering for Biofuels Development brings together the latest and most cutting-edge research on the production of biofuels. As the first book specifically devoted to process systems engineering for the production of biofuels, Process Systems Engineering for Biofuels Development covers theoretical, computational and experimental issues in biofuels process engineering. Written for researchers and postgraduate students working on biomass conversion and sustainable process design, as well as industrial practitioners and engineers involved in process design, modeling and optimization, this b...
Process intensifi cation aims for increasing effi ciency and sustainability of (bio-)chemical production processes. This book presents strategies for the intensifi cation of fluid separation processes such as reactive distillation, reactive absorption and membrane assisted separations. The authors discuss theoretical fundamentals, model development, methods for synthesis and the design as well as scale-up and industrial process applications.
Computer-aided process engineering (CAPE) plays a key design and operations role in the process industries, from the molecular scale through managing complex manufacturing sites. The research interests cover a wide range of interdisciplinary problems related to the current needs of society and industry. ESCAPE 23 brings together researchers and practitioners of computer-aided process engineering interested in modeling, simulation and optimization, synthesis and design, automation and control, and education. The proceedings present and evaluate emerging as well as established research methods and concepts, as well as industrial case studies. - Contributions from the international community using computer-based methods in process engineering - Reviews the latest developments in process systems engineering - Emphasis on industrial and societal challenges
Aviation sector contributes with 2% of the total CO2 emissions due to human activities. Moreover, predictions estimate that air traffic will duplicate in the next 20 years, with the corresponding increasing in CO2 emissions. The International Air Transport Association (IATA) has established four strategies to reduce CO2 emissions; one strategy is the development of aviation fuel from renewable feedstocks, known as biojet fuel. In 2009 UOP Honeywell received a patent for its process to produce aviation fuel from renewable feedstocks. The process considers the transformation of vegetable oil through hydrogenating, deoxygenating, isomerizing and selective hydrocracking to generate propane and h...
Stochastic Process Optimization using Aspen® Plus Bookshop Category: Chemical Engineering Optimization can be simply defined as "choosing the best alternative among a set of feasible options". In all the engineering areas, optimization has a wide range of applications, due to the high number of decisions involved in an engineering environment. Chemical engineering, and particularly process engineering, is not an exception; thus stochastic methods are a good option to solve optimization problems for the complex process engineering models. In this book, the combined use of the modular simulator Aspen® Plus and stochastic optimization methods, codified in MATLAB, is presented. Some basic conc...