Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Advanced Statistical Modeling, Forecasting, and Fault Detection in Renewable Energy Systems
  • Language: en
  • Pages: 212

Advanced Statistical Modeling, Forecasting, and Fault Detection in Renewable Energy Systems

Fault detection, control, and forecasting have a vital role in renewable energy systems (Photovoltaics (PV) and wind turbines (WTs)) to improve their productivity, ef?ciency, and safety, and to avoid expensive maintenance. For instance, the main crucial and challenging issue in solar and wind energy production is the volatility of intermittent power generation due mainly to weather conditions. This fact usually limits the integration of PV systems and WTs into the power grid. Hence, accurately forecasting power generation in PV and WTs is of great importance for daily/hourly efficient management of power grid production, delivery, and storage, as well as for decision-making on the energy market. Also, accurate and prompt fault detection and diagnosis strategies are required to improve efficiencies of renewable energy systems, avoid the high cost of maintenance, and reduce risks of fire hazards, which could affect both personnel and installed equipment. This book intends to provide the reader with advanced statistical modeling, forecasting, and fault detection techniques in renewable energy systems.

Mathematical Modelling and Scientific Computing with Applications
  • Language: en
  • Pages: 467

Mathematical Modelling and Scientific Computing with Applications

This book contains original research papers presented at the International Conference on Mathematical Modelling and Scientific Computing, held at the Indian Institute of Technology Indore, India, on 19–21 July 2018. Organized into 30 chapters, the book presents the recent progress and the most advanced innovations, trends, and real-world challenges encountered and solutions embraced in the applications of mathematics and scientific computing. The book will be of interests to a wide variety of researchers, students and the practicing engineers working in diverse areas of science and engineering, ranging from applied and computational mathematics, vibration problem, computer science, and num...

Road Traffic Modeling and Management
  • Language: en
  • Pages: 270

Road Traffic Modeling and Management

  • Type: Book
  • -
  • Published: 2021-10-05
  • -
  • Publisher: Elsevier

Road Traffic Modeling and Management: Using Statistical Monitoring and Deep Learning provides a framework for understanding and enhancing road traffic monitoring and management. The book examines commonly used traffic analysis methodologies as well the emerging methods that use deep learning methods. Other sections discuss how to understand statistical models and machine learning algorithms and how to apply them to traffic modeling, estimation, forecasting and traffic congestion monitoring. Providing both a theoretical framework along with practical technical solutions, this book is ideal for researchers and practitioners who want to improve the performance of intelligent transportation systems. - Provides integrated, up-to-date and complete coverage of the key components for intelligent transportation systems: traffic modeling, forecasting, estimation and monitoring - Uses methods based on video and time series data for traffic modeling and forecasting - Includes case studies, key processes guidance and comparisons of different methodologies

Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches
  • Language: en
  • Pages: 330

Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches

  • Type: Book
  • -
  • Published: 2020-07-03
  • -
  • Publisher: Elsevier

Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches tackles multivariate challenges in process monitoring by merging the advantages of univariate and traditional multivariate techniques to enhance their performance and widen their practical applicability. The book proceeds with merging the desirable properties of shallow learning approaches – such as a one-class support vector machine and k-nearest neighbours and unsupervised deep learning approaches – to develop more sophisticated and efficient monitoring techniques. Finally, the developed approaches are applied to monitor many processes, such as waste-water treatment plants, detection of obstacles in ...

Power Systems Cybersecurity
  • Language: en
  • Pages: 463

Power Systems Cybersecurity

This book covers power systems cybersecurity. In order to enhance overall stability and security in wide-area cyber-physical power systems and defend against cyberattacks, new resilient operation, control, and protection methods are required. The cyberattack-resilient control methods improve overall cybersecurity and stability in normal and abnormal operating conditions. By contrast, cyberattack-resilient protection schemes are important to keep the secure operation of a system under the most severe contingencies and cyberattacks. The main subjects covered in the book are: 1) proposing new tolerant and cyberattack-resilient control and protection methods against cyberattacks for future power systems, 2) suggesting new methods for cyberattack detection and cybersecurity assessment, and 3) focusing on practical issues in modern power systems.

Intelligent Data-Driven Modelling and Optimization in Power and Energy Applications
  • Language: en
  • Pages: 253

Intelligent Data-Driven Modelling and Optimization in Power and Energy Applications

  • Type: Book
  • -
  • Published: 2024-05-09
  • -
  • Publisher: CRC Press

This book provides a comprehensive understanding of how intelligent data-driven techniques can be used for modelling, controlling, and optimizing various power and energy applications. It aims to develop multiple data-driven models for forecasting renewable energy sources and to interpret the benefits of these techniques in line with first-principles modelling approaches. By doing so, the book aims to stimulate deep insights into computational intelligence approaches in data-driven models and to promote their potential applications in the power and energy sectors. Its key features include: an exclusive section on essential preprocessing approaches for the data-driven model a detailed overvie...

Uncertainty Quantification and Model Calibration
  • Language: en
  • Pages: 228

Uncertainty Quantification and Model Calibration

Uncertainty quantification may appear daunting for practitioners due to its inherent complexity but can be intriguing and rewarding for anyone with mathematical ambitions and genuine concern for modeling quality. Uncertainty quantification is what remains to be done when too much credibility has been invested in deterministic analyses and unwarranted assumptions. Model calibration describes the inverse operation targeting optimal prediction and refers to inference of best uncertain model estimates from experimental calibration data. The limited applicability of most state-of-the-art approaches to many of the large and complex calculations made today makes uncertainty quantification and model calibration major topics open for debate, with rapidly growing interest from both science and technology, addressing subtle questions such as credible predictions of climate heating.

Photovoltaic Systems
  • Language: en
  • Pages: 171

Photovoltaic Systems

  • Type: Book
  • -
  • Published: 2022-03-07
  • -
  • Publisher: CRC Press

This book provides comprehensive insight into the fault detection techniques implemented for photovoltaic (PV) panels. It includes studies related to predictive maintenance needed to improve the performance of the solar PV systems using Artificial Intelligence (AI) techniques. The readers gain knowledge on the fault identification algorithm and the significance of all such algorithms in real-time power system applications. Gives detailed overview of fundamental concepts of fault diagnosis algorithm for solar PV system Explains AC and DC side of the solar PV system-based electricity generation with real-time examples Covers effective extraction of the energy from solar radiation Illustrates artificial intelligence techniques for detecting the faults occurring in the solar PV system Includes MATLAB® based simulations and results on fault diagnosis including case studies This book is aimed at researchers, professionals and graduate students in electrical engineering, artificial intelligence, control algorithms, energy engineering, photovoltaic systems, industrial electronics.

Computational Techniques for Smart Manufacturing in Industry 5.0
  • Language: en
  • Pages: 386

Computational Techniques for Smart Manufacturing in Industry 5.0

  • Type: Book
  • -
  • Published: 2025-03-20
  • -
  • Publisher: CRC Press

We are witnessing rapid development in computational technologies and its applications in industry, leading to the 5th industrial revolution. Industry 5.0 is characterized by the synergies between machines and humans, with an aim to add value to production by creating personalized products able to meet customers' requirements. These intelligent manufacturing systems have been sought in various sectors (e.g. automobiles, power supplying, chemistry) to realize data-driven innovations for delivering highly customizable products and services faster, cheaper, better, and greener. This book presents recent advancements in research, new methods and techniques, and applications of advanced computati...

Knowledge Guided Machine Learning
  • Language: en
  • Pages: 442

Knowledge Guided Machine Learning

  • Type: Book
  • -
  • Published: 2022-08-15
  • -
  • Publisher: CRC Press

Given their tremendous success in commercial applications, machine learning (ML) models are increasingly being considered as alternatives to science-based models in many disciplines. Yet, these "black-box" ML models have found limited success due to their inability to work well in the presence of limited training data and generalize to unseen scenarios. As a result, there is a growing interest in the scientific community on creating a new generation of methods that integrate scientific knowledge in ML frameworks. This emerging field, called scientific knowledge-guided ML (KGML), seeks a distinct departure from existing "data-only" or "scientific knowledge-only" methods to use knowledge and d...