You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Mathematics of Computing -- Numerical Analysis.
The author, G. J. Chaitin, shows that God plays dice not only in quantum mechanics but also in the foundations of mathematics. According to Chaitin there exist mathematical facts that are true for no reason. This fascinating and provocative text contains a collection of his most wide-ranging and non-technical lectures and interviews. It will be of interest to anyone concerned with the philosophy of mathematics, the similarities and differences between physics and mathematics, and mathematics as art.
The book is a collection of papers written by a selection of eminent authors from around the world in honour of Gregory Chaitin's 60th birthday. This is a unique volume including technical contributions, philosophical papers and essays.
This book constitutes the thoroughly refereed post-proceedings of the Third International Conference on Numerical Analysis and Its Applications, NAA 2004, held in Rousse, Bulgaria in June/July 2004. The 68 revised full papers presented together with 8 invited papers were carefully selected during two rounds of reviewing and improvement. All current aspects of numerical analysis are addressed. Among the application fields covered are computational sciences and engineering, chemistry, physics, economics, simulation, fluid dynamics, visualization, etc.
Dr Gregory Chaitin, one of the world's leading mathematicians, is best known for his discovery of the remarkable ê number, a concrete example of irreducible complexity in pure mathematics which shows that mathematics is infinitely complex. In this volume, Chaitin discusses the evolution of these ideas, tracing them back to Leibniz and Borel as well as Gdel and Turing.This book contains 23 non-technical papers by Chaitin, his favorite tutorial and survey papers, including Chaitin's three Scientific American articles. These essays summarize a lifetime effort to use the notion of program-size complexity or algorithmic information content in order to shed further light on the fundamental work...
This new book from the authors of the classic book Numerical methods addresses the increasingly important role of numerical methods in science and engineering. More cohesive and comprehensive than any other modern textbook in the field, it combines traditional and well-developed topics with other material that is rarely found in numerical analysis texts, such as interval arithmetic, elementary functions, operator series, convergence acceleration, and continued fractions. Although this volume is self-contained, more comprehensive treatments of matrix computations will be given in a forthcoming volume. A supplementary Website contains three appendices: an introduction to matrix computations; a description of Mulprec, a MATLAB multiple precision package; and a guide to literature, algorithms, and software in numerical analysis. Review questions, problems, and computer exercises are also included. For use in an introductory graduate course in numerical analysis and for researchers who use numerical methods in science and engineering.
Provides a rapid introduction to the world of vector and parallel processing for these linear algebra applications.
This book is a guide to concepts and practice in numerical algebraic geometry ? the solution of systems of polynomial equations by numerical methods. Through numerous examples, the authors show how to apply the well-received and widely used open-source Bertini software package to compute solutions, including a detailed manual on syntax and usage options. The authors also maintain a complementary web page where readers can find supplementary materials and Bertini input files. Numerically Solving Polynomial Systems with Bertini approaches numerical algebraic geometry from a user's point of view with numerous examples of how Bertini is applicable to polynomial systems. It treats the fundamental...
This book investigates some of the difficulties related to scientific computing, describing how these can be overcome.
This book provides an introduction to computer benchmarking. Hockney includes material concerned with the definition of performance parameters and metrics and defines a set of suitable metrics with which to measure performance and units with which to express them. He also presents new ideas resulting from the application of dimensional analysis to the field of computer benchmarking. This results in the definition of a dimensionless universal scaling diagram that completely describes the scaling properties of a class of computer benchmarks on a single diagram, for all problem sizes and all computers describable by a defined set of hardware parameters.