You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Ion implantation offers one of the best examples of a topic that starting from the basic research level has reached the high technology level within the framework of microelectronics. As the major or the unique procedure to selectively dope semiconductor materials for device fabrication, ion implantation takes advantage of the tremendous development of microelectronics and it evolves in a multidisciplinary frame. Physicists, chemists, materials sci entists, processing, device production, device design and ion beam engineers are all involved in this subject. The present monography deals with several aspects of ion implantation. The first chapter covers basic information on the physics of devi...
Silicon, as an electronic substrate, has sparked a technological revolution that has allowed the realization of very large scale integration (VLSI) of circuits on a chip. These 6 fingernail-sized chips currently carry more than 10 components, consume low power, cost a few dollars, and are capable of performing data processing, numerical computations, and signal conditioning tasks at gigabit-per-second rates. Silicon, as a mechanical substrate, promises to spark another technological revolution that will allow computer chips to come with the eyes, ears, and even hands needed for closed-loop control systems. The silicon VLSI process technology which has been perfected over three decades can no...
This volume discusses both the practical and theoretical aspects of energy beam materials processing. It highlights the recent advances in the use of beams and incoherent light sources to enhance or modify chemical processes at solid surfaces. Special attention is given to the latest developments in the use of ion, electron and photon beams, and on laser-assisted process chemistry. Thin film and surface and interface reactions as well as bulk phase transformations are discussed. Practical technological details and the criteria for present and future applications are also reviewed. The papers collected in this volume reflect the continuing strong interest and variety of development in this field.
This conference consisted of 15 oral sessions, including three plenary papers covering areas of general interest, 22 specialist invited papers and 51 contributed presentations as well as three poster sessions. There were several scientific highlights covering a diverse spectrum of materials and ion beam processing methods. These included a wide range of conventional and novel applications such as: optical displays and opto-electronics, motor vehicle and tooling parts, coatings tailored for desired properties, studies of fundamental defect properties, the production of novel (often buried) compounds, and treating biomedical materials. The study of nanocrystals produced by ion implantation in ...
The primary thrust of very large scale integration (VLS!) is the miniaturization of devices to increase packing density, achieve higher speed, and consume lower power. The fabrication of integrated circuits containing in excess of four million components per chip with design rules in the submicron range has now been made possible by the introduction of innovative circuit designs and the development of new microelectronic materials and processes. This book addresses the latter challenge by assessing the current status of the science and technology associated with the production of VLSI silicon circuits. It represents the cumulative effort of experts from academia and industry who have come to...
None
This volume documents the proceedings of the Second Symposium on Metallized Plastics: Fundamental and Applied Aspects held under the aegis of the Dielectric Science and Technology Division of the Electrochemical Society in Montreal, Canada, May 7-10, 1990. The first symposium on this topic was held in Chicago, October 10-12, 1988 and the proceedings of l which have been chronicled in a hard-bound volume l As pointed out in the Preface to the proceedings of the first symposium the metallized plastics find scores of applications ranging from very mundane to very sophisticated. Even a cursory look at the literature will convince that this field has sprouted; and there is every reason to believe...
This volume compiles essential contributions to the most innovative fields of Plasma Processes and Polymers. High-quality contributions cover the fields of plasma deposition, plasma treatment of polymers and other organic compounds, plasma processes under partial vacuum and at atmospheric pressure, biomedical, textile, automotive, and optical applications as well as surface treatment of bulk materials, clusters, particles and powders. This unique collection of refereed papers is based on the best contributions presented at the 16th International Symposium on Plasma Chemistry in Taormina, Italy (ISPC-16, June 2003). A high class reference of relevance to a large audience in plasma community as well as in the area of its industrial applications.
As feature dimensions of integrated circuits shrink, the associated geometrical constraints on junction depth impose severe restrictions on the thermal budget for processing such devices. Furthermore, due to the relatively low melting point of the first aluminum metallization level, such restrictions extend to the fabrication of multilevel structures that are now essential in increasing packing density of interconnect lines. The fabrication of ultra large scale integrated (ULSI) devices under thermal budget restrictions requires the reassessment of existing and the development of new microelectronic materials and processes. This book addresses three broad but interrelated areas. The first ar...
Semiconductors lie at the heart of some of the most important industries and technologies of the twentieth century. The complexity of silicon integrated circuits is increasing considerably because of the continuous dimensional shrinkage to improve efficiency and functionality. This evolution in design rules poses real challenges for the materials scientists and processing engineers. Materials, defects and processing now have to be understood in their totality. World experts discuss, in this volume, the crucial issues facing lithography, ion implication and plasma processing, metallization and insulating layer quality, and crystal growth. Particular emphasis is placed upon silicon, but compound semiconductors and photonic materials are also highlighted. The fundamental concepts of phase stability, interfaces and defects play a key role in understanding these crucial issues. These concepts are reviewed in a crucial fashion.