You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Rapid thermal and integrated processing is an emerging single-wafer technology in ULSI semiconductor manufacturing, electrical engineering, applied physics and materials science. Here, the physics and engineering of this technology are discussed at the graduate level. Three interrelated areas are covered. First, the thermophysics of photon-induced annealing of semiconductor and related materials, including fundamental pyrometry and emissivity issues, the modelling of reactor designs and processes, and their relation to temperature uniformity. Second, process integration, treating the advances in basic equipment design, scale-up, integrated cluster-tool equipment, including wafer cleaning and integrated processing. Third, the deposition and processing of thin epitaxial, dielectric and metal films, covering selective deposition and epitaxy, integrated processing of layer stacks, and new areas of potential application, such as the processing of III-V semiconductor structures and thin- film head processing for high-density magnetic data storage.
Developments in lasers continue to enable progress in many areas such as eye surgery, the recording industry and dozens of others. This book presents citations from the book literature for the last 25 years and groups them for ease of access which is also provided by subject, author and titles indexes.
Materials processing with lasers is a rapidly expanding field which is increasingly captivating the attention of scientists, engineers and manufacturers alike. The aspect of most interest to scientists is provided by the basic interaction mechanisms between the intense light of a laser and materials exposed to a chemically reactive or nonreactive surrounding medium. Engineers and manufacturers see in the laser a new tool which will not only make manufacturing cheaper, faster, cleaner and more accurate but which also opens up entirely new technologies and manufacturing methods that are simply not available using existing techniques. Actual and potential applications range from laser machining...
Photo-Excited Processes, Diagnostics and Applications covers the area of photo-excitation and processing of materials by photons from the basic principles and theories to applications, from IR to x-rays, from gas phase to liquid and solid phases. The various chapters give a wide spectral view of this developing field. Twelve leading groups worldwide set down to write this book during the past two years which include the most updated techniques used in their laboratories for investigating photo-excited processes and new applications. This book will be useful to scientists and engineers who have a strong interest in photo-assisted processes development for microelectronics and photonics.
This book reviews the solid core of fundamental scientific knowledge on laser-stimulated surface chemistry that has accumulated over the past few years. It provides a useful overview for the student and interested non-expert as well as essential reference data (photodissociation cross sections, thermochemical constants, etc.) for the active researcher.
This is the first definitive book on rapid thermal processing (RTP), an essential namufacturing technology for single-wafer processing in highly controlled environments. Written and edited by nine experts in the field, this book covers a range of topics for academics and engineers alike, moving from basic theory to advanced technology for wafer manufacturing. The book also provides new information on the suitability or RTP for thin film deposition, junction formation, silicides, epitaxy, and in situ processing. Complete discussions on equipment designs and comparisons between RTP and other processing approaches also make this book useful for supplemental information on silicon processing, VLSI processing, and integrated circuit engineering.
The papers presented here reflect the core of the scientific activities that took place at the 1994 E-MRS conference. The contributions indicate that the field of photorefractive materials is advancing vigorously, moving into new classes of compounds, finding ways for the judicious tailoring of the microscopic properties of the materials - based on increased insight into the features of defects or quantum wells - and leading to new applications, often made possible by the advances at the forefront of the materials. The many papers presented by European participants emphasised the large amount of work being carried out here. Stimulating contributions also came from the United States and Japan, while papers presented by members from the industrial world indicate the importance of the field in this sector.
Laser and Ion Beam Modification of Materials is a compilation of materials from the proceedings of the symposium U: Material Synthesis and Modification by Ion beams and Laser Beams. This collection discusses the founding of the KANSAI Science City in Japan, and the structures, equipment, and research projects of two institutions are discussed pertaining to eV-MeV ion beams. A description of ion beams as used in materials research and in manufacturing processes, along with trends in ion implantation technology in semiconductors, is discussed. Research into ion beams by China and its industrial uses in non-semiconductor area is noted. For industrial applications, developing technology in terms...
Containing the proceedings of three symposia in the E-MRS series this book is divided into two parts. Part one is concerned with ion beam processing, a particularly powerful and versatile technology which can be used both to synthesise and modify materials, including metals, semiconductors, ceramics and dielectrics, with great precision and excellent control. Furthermore it also deals with the correlated effects in atomic and cluster ion bombardment and implantation.Part two deals with the deposition techniques, characterization and applications of advanced ceramic, metallic and polymeric coatings or thin films for surface protection against corrosion, erosion, abrasion, diffusion and for lubrication of contracting surfaces in relative motion.
Known and developed over the past twenty five years, lasers have been experimented in a variety of processes with an uneven success. Apart from fundamental physics experiments in which the various aspects of coherence are systematically exploited, applications in the field of Materials Science have been scattered recently over so many situations that it is apparently difficult today to conceive a comprehensive interpretation of all physical processes encountered. In some domains of research like photochemistry, development has been fast and rather self-supporting. In others, like solid-state processing, progress has been either very specific or deviated towards marginal applications, or else...