You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This biography illuminates the life of Ennio De Giorgi, a mathematical genius in parallel with John Nash, the Nobel Prize Winner and protagonist of A Beautiful Mind. Beginning with his childhood and early years of research, into his solution of the 19th problem of Hilbert and his professorship, this book pushes beyond De Giorgi’s rich contributions to the mathematics community, to present his work in human rights, including involvement in the fight for Leonid Plyushch’s freedom and the defense of dissident Uruguayan mathematician José Luis Massera. Considered by many to be the greatest Italian analyst of the twentieth century, De Giorgi is described in this volume in full through documents and direct interviews with friends, family, colleagues, and former students.
This volume is a selection of contributions offered by friends, collaborators, past students in memory of Enrico Magenes. The first part gives a wide historical perspective of Magenes' work in his 50-year mathematical career; the second part contains original research papers, and shows how ideas, methods, and techniques introduced by Magenes and his collaborators still have an impact on the current research in Mathematics.
A readable and user-friendly introduction to fluid mechanics, this high-level text is geared toward advanced undergraduates and graduate students. Mathematicians, physicists, and engineers will also benefit from this lucid treatment. The book begins with a derivation of the equations of fluid motion from statistical mechanics, followed by examinations of the classical theory and a portion of the modern mathematical theory of viscous, incompressible fluids. A considerable part of the final chapters is devoted to the Navier-Stokes equations. The text assumes a familiarity with functional analysis and some complex variables, and it includes an especially valuable discussion of the modern function theoretic approach to solving partial differential equations. Numerous exercises appear throughout the text.
A graduate text explaining how methods of nonlinear analysis can be used to tackle nonlinear differential equations. Suitable for mathematicians, physicists and engineers, topics covered range from elementary tools of bifurcation theory and analysis to critical point theory and elliptic partial differential equations. The book is amply illustrated with many exercises.
The aim of this book is to provide beginning graduate students who completed the first two semesters of graduate-level analysis and PDE courses with a first exposure to the mathematical analysis of the incompressible Euler and Navier-Stokes equations. The book gives a concise introduction to the fundamental results in the well-posedness theory of these PDEs, leaving aside some of the technical challenges presented by bounded domains or by intricate functional spaces. Chapters 1 and 2 cover the fundamentals of the Euler theory: derivation, Eulerian and Lagrangian perspectives, vorticity, special solutions, existence theory for smooth solutions, and blowup criteria. Chapters 3, 4, and 5 cover ...
This book presents the theory of the linearization method as applied to the problem of steady-state and periodic motions of continuous media. The author proves infinite-dimensional analogues of Lyapunov's theorems on stability, instability, and conditional stability for a large class of continuous media. In addition, semigroup properties for the linearized Navier-Stokes equations in the case of an incompressible fluid are studied, and coercivity inequalities and completeness of a system of small oscillations are proved.
Praise for the first edition “The author is an outstanding expert in harmonic analysis who has made important contributions. The book contains rigorous proofs of a number of the latest results in the field. I strongly recommend the book to postgraduate students and researchers working on challenging problems of harmonic analysis and mathematical theory of Navier-Stokes equations." —Gregory Seregin, St Hildas College, Oxford University “"This is a great book on the mathematical aspects of the fundamental equations of hydrodynamics, the incompressible Navier-Stokes equations. It covers many important topics and recent results and gives the reader a very good idea about where the theory s...
This book is the second of two volumes which contain the proceedings of the Workshop on Nonlinear Partial Differential Equations, held from May 28-June 1, 2012, at the University of Perugia in honour of Patrizia Pucci's 60th birthday. The workshop brought together leading experts and researchers in nonlinear partial differential equations to promote research and to stimulate interactions among the participants.
This IMA Volume in Mathematics and its Applications DEGENERATE DIFFUSIONS is based on the proceedings of a workshop which was an integral part of the 1990- 91 IMA program on "Phase Transitions and Free Boundaries". The aim of this workshop was to provide some focus in the study of degenerate diffusion equations, and by involving scientists and engineers as well as mathematicians, to keep this focus firmly linked to concrete problems. We thank Wei-Ming Ni, L.A. Peletier and J.L. Vazquez for organizing the meet ing. We especially thank Wei-Ming Ni for editing the proceedings. We also take this opportunity to thank those agencies whose financial support made the workshop possible: the Army Research Office, the National Science Foun dation, and the Office of Naval Research. A vner Friedman Willard Miller, Jr. PREFACE This volume is the proceedings of the IMA workshop "Degenerate Diffusions" held at the University of Minnesota from May 13 to May 18, 1991.