You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
SUPERVISED and UNSUPERVISED DATA ENGINEERING for MULTIMEDIA DATA Explore the cutting-edge realms of data engineering in multimedia with Supervised and Unsupervised Data Engineering for Multimedia Data, where expert contributors delve into innovative methodologies, offering invaluable insights to empower both novices and seasoned professionals in mastering the art of manipulating multimedia data with precision and efficiency. Supervised and Unsupervised Data Engineering for Multimedia Data presents a groundbreaking exploration into the intricacies of handling multimedia data through the lenses of both supervised and unsupervised data engineering. Authored by a team of accomplished experts in ...
This book discusses one of the major applications of artificial intelligence: the use of machine learning to extract useful information from multimodal data. It discusses the optimization methods that help minimize the error in developing patterns and classifications, which further helps improve prediction and decision-making. The book also presents formulations of real-world machine learning problems, and discusses AI solution methodologies as standalone or hybrid approaches. Lastly, it proposes novel metaheuristic methods to solve complex machine learning problems. Featuring valuable insights, the book helps readers explore new avenues leading toward multidisciplinary research discussions.
The disciplines of science and engineering rely heavily on the forecasting of prospective constraints for concepts that have not yet been proven to exist, especially in areas such as artificial intelligence. Obtaining quality solutions to the problems presented becomes increasingly difficult due to the number of steps required to sift through the possible solutions, and the ability to solve such problems relies on the recognition of patterns and the categorization of data into specific sets. Predictive modeling and optimization methods allow unknown events to be categorized based on statistics and classifiers input by researchers. The Handbook of Research on Predictive Modeling and Optimizat...
This book constitutes the refereed proceedings of the Third International Conference on Advanced Data Mining and Applications, ADMA 2007, held in Harbin, China in August 2007. The papers focus on advancements in data mining and peculiarities and challenges of real world applications using data mining.
The volume LNCS 9377 constitutes the refereed proceedings of the 12th International Symposium on Neural Networks, ISNN 2015, held in Jeju, South Korea in October 2015. The 55 revised full papers presented were carefully reviewed and selected from 97 submissions. These papers cover many topics of neural network-related research including intelligent control, neurodynamic analysis, memristive neurodynamics, computer vision, signal processing, machine learning, and optimization.
This is Volume III of a three volume set constituting the refereed proceedings of the Third International Symposium on Neural Networks, ISNN 2006. 616 revised papers are organized in topical sections on neurobiological analysis, theoretical analysis, neurodynamic optimization, learning algorithms, model design, kernel methods, data preprocessing, pattern classification, computer vision, image and signal processing, system modeling, robotic systems, transportation systems, communication networks, information security, fault detection, financial analysis, bioinformatics, biomedical and industrial applications, and more.
Dimensionality reduction, also known as manifold learning, is an area of machine learning used for extracting informative features from data for better representation of data or separation between classes. This book presents a cohesive review of linear and nonlinear dimensionality reduction and manifold learning. Three main aspects of dimensionality reduction are covered: spectral dimensionality reduction, probabilistic dimensionality reduction, and neural network-based dimensionality reduction, which have geometric, probabilistic, and information-theoretic points of view to dimensionality reduction, respectively. The necessary background and preliminaries on linear algebra, optimization, an...
Artificial intelligence, or AI, now affects the day-to-day life of almost everyone on the planet, and continues to be a perennial hot topic in the news. This book presents the proceedings of ECAI 2023, the 26th European Conference on Artificial Intelligence, and of PAIS 2023, the 12th Conference on Prestigious Applications of Intelligent Systems, held from 30 September to 4 October 2023 and on 3 October 2023 respectively in Kraków, Poland. Since 1974, ECAI has been the premier venue for presenting AI research in Europe, and this annual conference has become the place for researchers and practitioners of AI to discuss the latest trends and challenges in all subfields of AI, and to demonstrat...
This book contains some selected papers from the International Conference on Extreme Learning Machine 2014, which was held in Singapore, December 8-10, 2014. This conference brought together the researchers and practitioners of Extreme Learning Machine (ELM) from a variety of fields to promote research and development of “learning without iterative tuning”. The book covers theories, algorithms and applications of ELM. It gives the readers a glance of the most recent advances of ELM.
The three volume set LNCS 4232, LNCS 4233, and LNCS 4234 constitutes the refereed proceedings of the 13th International Conference on Neural Information Processing, ICONIP 2006, held in Hong Kong, China in October 2006. The 386 revised full papers presented were carefully reviewed and selected from 1175 submissions.