You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Recent years have witnessed important developments in those areas of the mathematical sciences where the basic model under study is a dynamical system such as a differential equation or control process. Many of these recent advances were made possible by parallel developments in nonlinear and nonsmooth analysis. The latter subjects, in general terms, encompass differential analysis and optimization theory in the absence of traditional linearity, convexity or smoothness assumptions. In the last three decades it has become increasingly recognized that nonlinear and nonsmooth behavior is naturally present and prevalent in dynamical models, and is therefore significant theoretically. This point ...
In view of Professor Wendell Fleming's many fundamental contributions, his profound influence on the mathematical and systems theory communi ties, his service to the profession, and his dedication to mathematics, we have invited a number of leading experts in the fields of control, optimiza tion, and stochastic systems to contribute to this volume in his honor on the occasion of his 70th birthday. These papers focus on various aspects of stochastic analysis, control theory and optimization, and applications. They include authoritative expositions and surveys as well as research papers on recent and important issues. The papers are grouped according to the following four major themes: (1) lar...
This monograph presents the most recent developments in the study of Hamilton-Jacobi Equations and control problems with discontinuities, mainly from the viewpoint of partial differential equations. Two main cases are investigated in detail: the case of codimension 1 discontinuities and the stratified case in which the discontinuities can be of any codimensions. In both, connections with deterministic control problems are carefully studied, and numerous examples and applications are illustrated throughout the text. After an initial section that provides a “toolbox” containing key results which will be used throughout the text, Parts II and III completely describe several recently introdu...
This book presents methods to study the controllability and the stabilization of nonlinear control systems in finite and infinite dimensions. The emphasis is put on specific phenomena due to nonlinearities. In particular, many examples are given where nonlinearities turn out to be essential to get controllability or stabilization. Various methods are presented to study the controllability or to construct stabilizing feedback laws. The power of these methods is illustrated by numerous examples coming from such areas as celestial mechanics, fluid mechanics, and quantum mechanics. The book is addressed to graduate students in mathematics or control theory, and to mathematicians or engineers with an interest in nonlinear control systems governed by ordinary or partial differential equations.
Toward the late 1990s, several research groups independently began developing new, related theories in mathematical finance. These theories did away with the standard stochastic geometric diffusion “Samuelson” market model (also known as the Black-Scholes model because it is used in that most famous theory), instead opting for models that allowed minimax approaches to complement or replace stochastic methods. Among the most fruitful models were those utilizing game-theoretic tools and the so-called interval market model. Over time, these models have slowly but steadily gained influence in the financial community, providing a useful alternative to classical methods. A self-contained monog...
The theory of elliptic boundary problems is fundamental in analysis and the role of spaces of weakly differentiable functions (also called Sobolev spaces) is essential in this theory as a tool for analysing the regularity of the solutions. This book offers on the one hand a complete theory of Sobolev spaces, which are of fundamental importance for elliptic linear and non-linear differential equations, and explains on the other hand how the abstract methods of convex analysis can be combined with this theory to produce existence results for the solutions of non-linear elliptic boundary problems. The book also considers other kinds of functional spaces which are useful for treating variational...
None
The International Council for Industrial and Applied Mathematics (ICIAM) is the worldwide organization of societies which are dedicated primarily or significantly to applied and/or industrial mathematics. The ICIAM Congresses, held every 4 years, are run under the auspices of the Council with the aim to advance the applications of mathematics in all parts of the world. The Sixth ICIAM Congress was held in Zurich, Switzerland, July 16-20, 2007, and was attended by more than 3000 scientists from 47 countries. This volume collects the invited lectures of this Congress, the appreciations of the ICIAM Prize winners' achievements, and the Euler Lecture celebrating the 300th anniversary of Euler. T...
This volume contains the contributions of the participants of the Sixth Oslo-Silivri Workshop on Stochastic Analysis, held in Geilo from July 29 to August 6, 1996. There are two main lectures " Stochastic Differential Equations with Memory, by S.E.A. Mohammed, " Backward SDE's and Viscosity Solutions of Second Order Semilinear PDE's, by E. Pardoux. The main lectures are presented at the beginning of the volume. There is also a review paper at the third place about the stochastic calculus of variations on Lie groups. The contributing papers vary from SPDEs to Non-Kolmogorov type probabilistic models. We would like to thank " VISTA, a research cooperation between Norwegian Academy of Sciences ...