You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
Heliophysics is a fast-developing scientific discipline that integrates studies of the Sun's variability, the surrounding heliosphere, and the environment and climate of planets. Over the past few centuries, our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever increasing rate. This 2010 volume, the last in this series of three heliophysics texts, focuses on long-term variability from the Sun's decade-long sunspot cycle and considers the evolution of the planetary system over ten billion years from a climatological perspective. Topics covered range from the dynamo action of stars and planets to processes in the Earth's troposphere, ionosphere, and magnetosphere and their effects on planetary climate and habitability. Supplemented by online teaching materials, it can be used as a textbook for courses or as a foundational reference for researchers in fields from astrophysics and plasma physics to planetary and climate science.
This book presents contributions to the 19th biannual symposium of the German Aerospace Aerodynamics Association (STAB) and the German Society for Aeronautics and Astronautics (DGLR). The individual chapters reflect ongoing research conducted by the STAB members in the field of numerical and experimental fluid mechanics and aerodynamics, mainly for (but not limited to) aerospace applications, and cover both nationally and EC-funded projects. Special emphasis is given to collaborative research projects conducted by German scientists and engineers from universities, research-establishments and industries. By addressing a number of cutting-edge applications, together with the relevant physical and mathematics fundamentals, the book provides readers with a comprehensive overview of the current research work in the field. Though the book’s primary emphasis is on the aerospace context, it also addresses further important applications, e.g. in ground transportation and energy.
CAWSES (Climate and Weather of the Sun-Earth System) is the most important scientific program of SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). CAWSES has triggered a scientific priority program within the German Research Foundation for a period of 6 years. Approximately 30 scientific institutes and 120 scientists were involved in Germany with strong links to international partners. The priority program focuses on solar influence on climate, atmospheric coupling processes, and space climatology. This book summarizes the most important results from this program covering some important research topics from the Sun to climate. Solar related processes are studied including the evol...
This book collates the written contributions of the Second Conference on Air Pollution Modelling and Simulation (APMS 2001). A wide range of current topics is covered, focusing on three challenging issues: (1) the modelling issue of complex, multiphase, atmospheric chemistry; (2) the numerical issue associated with comprehensive three-dimensional chemistry-transport models; and (3) the key issues of data assimilation and inverse modelling. State-of-the art research is presented with many operational procedures applied at either forecast agencies or companies.
Ever since climate change has been identified as one of the most significant challenges of humanity, climate change deniers have repeatedly tried to discredit the work of scientists. To show how these processes work, Maria M. Sojka examines three ideals about how science should operate. These ideals concern the understanding of uncertainties, the relationship between models and data, and the role of values in science. Their widespread presence in the public understanding of science makes it easy for political and industrial stakeholders to undermine inconvenient research. To address this issue, Sojka analyses the importance of tacit knowledge in scientific practice and the question of what defines an expert.
This concise and up-to-date textbook provides an accessible introduction to the core concepts of nonlinear dynamics as well as its existing and potential applications. The book is aimed at students and researchers in all the diverse fields in which nonlinear phenomena are important. Since most tasks in nonlinear dynamics cannot be treated analytically, skills in using numerical simulations are crucial for analyzing these phenomena. The text therefore addresses in detail appropriate computational methods as well as identifying the pitfalls of numerical simulations. It includes numerous executable code snippets referring to open source Julia software packages. Each chapter includes a selection of exercises with which students can test and deepen their skills.
An internationally recognized scientist presents his theories and associated technology for the coming generations of adaptive intelligent machines. In this extraordinary book, the pioneer of research in collective learning systems (an adaptive learning paradigm for artificial intelligence) describes the processes of cognition, postulates a fundamental adaptive building block for assembling very large scale collective learning systems (the learning cell), and proposes a design for the ultimate machine: a hierarchical network of 100 million learning cells that could exhibit the full range of cognitive capabilities of the human mind. The author predicts that using the classical "expert system"...
ESA’s Venus Express Mission has monitored Venus since April 2006, and scientists worldwide have used mathematical models to investigate its atmosphere and model its circulation. This book summarizes recent work to explore and understand the climate of the planet through a research program under the auspices of the International Space Science Institute (ISSI) in Bern, Switzerland. Some of the unique elements that are discussed are the anomalies with Venus’ surface temperature (the huge greenhouse effect causes the surface to rise to 460°C, without which would plummet as low as -40°C), its unusual lack of solar radiation (despite being closer to the Sun, Venus receives less solar radiation than Earth due to its dense cloud cover reflecting 76% back) and the juxtaposition of its atmosphere and planetary rotation (wind speeds can climb up to 200 m/s, much faster than Venus’ sidereal day of 243 Earth-days).
None