You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The 22nd International Free Electron Laser Conference and 7th FEL User Workshop were held August 13-18, 2000 at Washington Duke Inn and Golf Club in Durham, North Carolina, USA. The conference and the workshop were hosted by Duke University's Free Electron laser (FEL) Laboratory. Following tradition, the FEL prize award was announced at the banquet. The year 2000 FEL prize was awarded to three scientists propelling the limits of high power FELs: Steven Benson, Eisuke Minehara and George Neill. The conference program was comprised of traditional oral sessions on First Lasing, FEL theory, storage ring FELs, linac and high power FELs, long wavelength FELs, SASE FELs, accelerator and FEL physics...
Recent advances in ultrashort pulsed laser technology have opened new frontiers in atomic, molecular and optical sciences. The 12th International Conference on Multiphoton Processes (ICOMP12) and the 3rd International Conference on Attosecond Physics (ATTO3), held jointly in Sapporo, Japan, during July 3-8, showcased studies at the forefront of research on multiphoton processes and attosecond physics. This book summarizes presentations and discussions from these two conferences.
Space launches have evoked the same vivid image for decades: bright orange flames exploding beneath a rocket as it lifts off and thunders into the sky. An alternative acceleration system could reshape that vision forever, with rockets leaving their energy source on the ground... or in space. Laser Propulsion in Space: Fundamentals, Technology, and Future Missions takes readers on a comprehensive journey from the theoretical overview of propulsion fundamentals, to reviews of current projects involving high-power CW fiber lasers and energetic mm-wave sources with their ongoing and potential end-use applications in beamed energy propulsion (BEP). Written by experts in the field, this mathematic...
This volume presents the latest advancements and future perspectives of atomic, molecular and optical (AMO) physics and its vital role in modern sciences and technologies. The chapters are devoted to a wide range of quantum systems, with an emphasis on the understanding of ionization, high-harmonic generation, molecular orbital imaging and coherent control phenomena originating from light-matter interactions. The book overviews current research landscape and highlight major scientific trends in AMO physics interfacing with interdisciplinary sciences. It may be particularly interesting for young researchers working on establishing their scientific interests and goals.
Over the last half century we have witnessed tremendous progress in the production of high-quality photons by electrons in accelerators. This dramatic evolution has seen four generations of accelerators as photon sources. The 1st generation used the electron storage rings built primarily for high-energy physics experiments, and the synchrotron radiation from the bending magnets was used parasitically. The 2nd generation involved rings dedicated to synchrotron radiation applications, with the radiation again from the bending magnets. The 3rd generation, currently the workhorse of these photon sources, is dedicated advanced storage rings that employ not only bending magnets but also insertion ...
Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.
Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the "Willardson and Beer" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scientific laboratories and modern industry. - Written and edited by internationally renowned experts - Relevant to a wide readership: physicists, chemists, materials scientists, and device engineers in academia, scientific laboratories and modern industry
Particle Accelerator Physics is an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. Part I gathers the basic tools, recalling the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part II is an extensive primer in beam dynamics, followed in Part III by the introduction and description of the main beam parameters. Part IV is devoted to the treatment of perturbations in beam dynamics. Part V discusses the details of charged particle acceleration. Part VI and Part VII introduce the more advanced topics of coupled beam dynamics and the description of very intense beams. Part VIII is an exhaustive treatment of radiation from accelerated charges and introduces important sources of coherent radiation such as synchrotrons and free-electron lasers. Part IX collects the appendices gathering useful mathematical and physical formulae, parameters and units. Solutions to many end-of-chapter problems are given. This textbook is suitable for an intensive two-semester course starting at the advanced undergraduate level.
This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam p...
Each generation yielded growths in brightness and time resolution that were unimaginable just a few years earlier. In particular, the progression from the 3rd to 4th generation is a true revolution; the peak brilliance of coherent soft and hard x-rays has increased by 7-10 orders of magnitude, and the image resolution has reached the angstrom (1 [symbol] = 10-10 meters) and femto-second (1 fs = 10-15 second) scales. These impressive capabilities have fostered fundamental scientific advances and led to an explosion of numerous possibilities in many important research areas including material science, chemistry, molecular biology and the life sciences. Even more remarkably, this field of photon source invention and development shows no signs of slowing down. Studies have already been started on the next generation of x-ray sources, which would have a time resolution in the atto-second (1 as = 10-18 second) regime, comparable to the time of electron motion inside atoms.