You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Modeling and Simulation in Python teaches readers how to analyze real-world scenarios using the Python programming language, requiring no more than a background in high school math. Modeling and Simulation in Python is a thorough but easy-to-follow introduction to physical modeling—that is, the art of describing and simulating real-world systems. Readers are guided through modeling things like world population growth, infectious disease, bungee jumping, baseball flight trajectories, celestial mechanics, and more while simultaneously developing a strong understanding of fundamental programming concepts like loops, vectors, and functions. Clear and concise, with a focus on learning by doing, the author spares the reader abstract, theoretical complexities and gets right to hands-on examples that show how to produce useful models and simulations.
Python for Bioinformatics provides a clear introduction to the Python programming language and instructs beginners on the development of simple programming exercises. Important Notice: The digital edition of this book is missing some of the images or content found in the physical edition.
For decades, researchers have been developing algorithms to manipulate and analyze images. From this, a common set of image tools now appear in many high-level programming languages. Consequently, the amount of coding required by a user has significantly lessened over the years. While the libraries for image analysis are coalescing to a common toolkit, the language of image analysis has remained stagnant. Often, textual descriptions of an analytical protocol consume far more real estate than does the computer code required to execute the processes. Furthermore, the textual explanations are sometimes vague or incomplete. This book offers a precise mathematical language for the field of image ...
* Weitere Angaben Verfasser: Thomas Lindblad is a professor at the Royal Institute of Technology (Physics) in Stockholm. Working and teaching nuclear and environmental physics his main interest is with sensors, signal processing and intelligent data analysis of torrent data from experiments on-line accelerators, in space, etc. Jason Kinser is an associate professor at George Mason University. He has developed a plethora of image processing applications in the medical, military, and industrial fields. He has been responsible for the conversion of PCNN theory into practical applications providing many improvements in both speed and performance
As technology advances education has expanded from the classroom into other formats including on-line delivery, flipped classrooms and hybrid delivery. Congruent with these is the need for alternative formats for laboratory experiences. This explosion in technology has also placed in the hands of a majority of students a sensor suite tucked neatly into their smart phones or smart tablets. The popularity of these devices provides a new avenue for the non-traditional kinematic lab experience. This book addresses this issue by providing 13 labs spanning the common topics in the first semester of university level physics. Each lab is designed to use only the student's smart phone, laptop and items easily found in big-box stores or a hobby shop. Each lab contains theory, set-up instructions and basic analysis techniques. All of these labs can be performed outside of the traditional university lab setting and initial costs averaging less than $8 per student per lab excluding thesmart phone and laptop.
The use of Python as a powerful computational tool is expanding with great strides. Python is a language which is easy to use, and the libraries of tools provides it with efficient versatility. As the tools continue to expand, users can create insightful models and simulations. While the tools offer an easy method to create a pipeline, such constructions are not guaranteed to provide correct results. A lot of things can go wrong when building a simulation - deviously so. Users need to understand more than just how to build a process pipeline. Modeling and Simulation in Python introduces fundamental computational modeling techniques that are used in a variety of science and engineering discip...
"This compilation was originally published online at www.sithrah.com in 2014."--Indicia.
The growth of private higher education is a global phenomenon. Driven in large measure by the growing demand for education and the inability or unwillingness of the public sector to handle the surge, these new institutions now serve nearly a third of all students in postsecondary education around the world. The sector is diverse, however, with some older and more elite institutions alongside the newer entrants and a range of programs, academic models, and regulatory patterns. Private institutions are typically nonprofit, though the for-profit subsector is becoming more prevalent. In addition, cross-border higher education is a private sector activity in every country where it exists, even wh...
This book presents the texts of seminars presented during the years 1995 and 1996 at the Université Paris VI and is the first attempt to present a survey on this subject. Starting from the classical conditions for existence and unicity of a solution in the most simple case-which requires more than basic stochartic calculus-several refinements on the hypotheses are introduced to obtain more general results.
Optoelectronics is a rapidly expanding field of research and development. In years to come, it is destined to play a primary role in the growing information industry. The basic philosophy behind the science and technology of optoelectronics is to create and develop photonic devices in which optical photons (light waves) instead of electronic carriers, are manipulated for the conventional task performed by microelectronics. Thanks to the availability of large bandwidth at optical frequencies, the development of cost-effective low-loss low-dispersion silica fibers for optical transmission, and the possibility of ultra-fast two-dimensional processing, the field of present-day microelectronics i...