You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book aims to bring together researchers and practitioners from diverse disciplines—from sociology, biology, physics, and computer science—who share a passion to better understand the interdependencies within and across systems. This volume contains contributions presented at the 11th International Conference on Complex Networks (CompleNet) in Exeter, United Kingdom, 31 March - 3 April 2020. CompleNet is a venue for discussing ideas and findings about all types of networks, from biological, to technological, to informational and social. It is this interdisciplinary nature of complex networks that CompleNet aims to explore and celebrate.
This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students, and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the XI International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2022). The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure, network dynamics; diffusion, epidemics, and spreading processes; resilience and control as well as all the main network applications, including social and political networks; networks in finance and economics; biological and neuroscience networks and technological networks.
n Hidden Depths, Professor Penny Spikins explores how our emotional connections have shaped human ancestry. Focusing on three key transitions in human origins, Professor Spikins explains how the emotional capacities of our early ancestors evolved in response to ecological changes, much like similar changes in other social mammals. For each transition, dedicated chapters examine evolutionary pressures, responses in changes in human emotional capacities and the archaeological evidence for human social behaviours. Starting from our earliest origins, in Part One, Professor Spikins explores how after two million years ago, movement of human ancestors into a new ecological niche drove new types of...
Unifying Themes in Complex Systems is a well-established series of carefully edited conference proceedings that serve to document and archive the progress made regarding cross-fertilization in this field. The International Conference on Complex Systems (ICCS) creates a unique atmosphere for scientists from all fields, engineers, physicians, executives, and a host of other professionals, allowing them to explore common themes and applications of complex systems science. With this new volume, Unifying Themes in Complex Systems continues to establish common ground between the wide-ranging domains of complex systems science.
Networks naturally appear in many high-impact domains, ranging from social network analysis to disease dissemination studies to infrastructure system design. Within network studies, network connectivity plays an important role in a myriad of applications. The diversity of application areas has spurred numerous connectivity measures, each designed for some specific tasks. Depending on the complexity of connectivity measures, the computational cost of calculating the connectivity score can vary significantly. Moreover, the complexity of the connectivity would predominantly affect the hardness of connectivity optimization, which is a fundamental problem for network connectivity studies. This bo...
There are many examples of cooperation in Nature: cells cooperate to form tissues, organs cooperate to form living organisms, and individuals cooperate to raise their offspring or to hunt. However, why cooperation emerges and survives in hostile environments, when defecting would be a much more profitable short-term strategy, is a question that still remains open. During the past few years, several explanations have been proposed, including kin and group selection, punishment and reputation mechanisms, or network reciprocity. This last one will be the center of the present study. The thesis explores the interface between the underlying structure of a given population and the outcome of the cooperative dynamics taking place on top of it, (namely, the Prisoner's Dilemma Game). The first part of this work analyzes the case of a static system, where the pattern of connections is fixed, so it does not evolve over time. The second part develops two models for growing topologies, where the growth and the dynamics are entangled.
Network research has recently been adopted as one of the tools of the trade in archaeology, used to study a wide range of topics: interactions between island communities, movements through urban spaces, visibility in past landscapes, material culture similarity, exchange, and much more. This Handbook is the first authoritative reference work for archaeological network research, featuring current topical trends and covering the archaeological application of network methods and theories. This is elaborately demonstrated through substantive topics and case studies drawn from a breadth of periods and cultures in world archaeology. It highlights and further develops the unique contributions made by archaeological research to network science, especially concerning the development of spatial and material culture network methods and approaches to studying long-term network change. This is the go-to resource for students and scholars wishing to explore how network science can be applied in archaeology through an up-to-date overview of the field.
Around the globe, there is an increasingly urgent need to provide opportunities for learners to embrace complexity; to develop the many skills and habits of mind that are relevant to today's complex and interconnected world; and to make learning more connected to our rapidly changing workplace and society. This presents an opportunity to (1) leverage new paradigms for understanding the structure and function of teaching and learning communities, and (2) to promote new approaches to developing methods, curricular materials, and resources. Network science - the study of connectivity - can play an important role in these activities, both as an important subject in teaching and learning and as a...
"Graphs. Such a simple idea. Map a problem onto a graph then solve it by searching over the graph or by exploring the structure of the graph. What could be easier? Turns out, however, that working with graphs is a vast and complex field. Keeping up is challenging. To help keep up, you just need an editor who knows most people working with graphs, and have that editor gather nearly 70 researchers to summarize their work with graphs. The result is the book Massive Graph Analytics." — Timothy G. Mattson, Senior Principal Engineer, Intel Corp Expertise in massive-scale graph analytics is key for solving real-world grand challenges from healthcare to sustainability to detecting insider threats, cyber defense, and more. This book provides a comprehensive introduction to massive graph analytics, featuring contributions from thought leaders across academia, industry, and government. Massive Graph Analytics will be beneficial to students, researchers, and practitioners in academia, national laboratories, and industry who wish to learn about the state-of-the-art algorithms, models, frameworks, and software in massive-scale graph analytics.