You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book addresses the use of ionic liquids in biotransformation and organocatalysis. Its major parts include: an overview of the fundamentals of ionic liquids and their interactions with proteins and enzymes; the use of ILs in biotransformations; non-solvent applications such as additives, membranes, substrate anchoring, and the use of ILs in organocatalysis (from solvents to co-catalysts and new reactivities, as well as non-solvent applications such as anchoring and immobilization).
Increased environmental consciousness within the scientific community has spurred the search for environmentally friendly processes as alternatives to conventional organic solvents. In the past two decades, numerous advances-including the use of ionic liquids-have made it possible to develop substitutes for some toxic solvents. Ionic liquids are wi
The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals describes the importance of catalysis for the sustainable production of biofuels and biochemicals, focused primarily on the state-of-the-art catalysts and catalytic processes expected to play a decisive role in the "green" production of fuels and chemicals from biomass. In addition, the book includes general elements regarding the entire chain of biomass production, conversion, environment, economy, and life-cycle assessment. Very few books are available on catalysis in production schemes using biomass or its primary conversion products, such as bio-oil and lignin. This book fills that gap with detailed discu...
In flow chemistry reactions are performed in a reactor with the reactants pumped through it. It has the benefit of being easily scaled up and it is straightforward to integrate synthesis, workup and analysis into one system. This volume provides an update on recent advances in the field of flow chemistry, with special emphasis on new, integrated approaches for green and efficient chemistry. This book is a valuable resource for researchers in green chemistry, chemical engineers and Industrial chemists working in the pharmaceutical and fine chemicals industries.
Vitamins are a group of physiologically very important, chemically quite complex organic compounds, that are essential for humans and animals. Some vitamins and other growth factors behave as antioxidants, while some can be considered as biopigments. As their chemical synthesis is laborious, their biotechnology-based synthesis and production via microbial fermentation has gained substantial interest within the last decades. Recent progress in microbial genetics and in metabolic engineering and implementation of innovative bioprocess technology has led to a biotechnology-based industrial production of many vitamins and related compounds. Divided into three sections, this volume covers: 1. water-soluble vitamins 2. fat-soluble vitamin compounds and 3. other growth factors, biopigments, and antioxidants. They are all reviewed systematically: from natural occurrence and assays, via biosynthesis, strain development, to industrially-employed biotechnological syntheses and applications.
The synergy between synthetic biology and biocatalysis is emerging as an important trend for future sustainable processes. This book reviews all modern and novel techniques successfully implemented in biocatalysis, in an effort to provide better performing enzymatic systems and novel biosynthetic routes to (non-)natural products. This includes the use of molecular techniques in protein design and engineering, construction of artificial metabolic pathways, and application of computational methods for enzyme discovery and design. Stress is placed on current 'hot' topics in biocatalysis, where recent advances in research are defining new grounds in enzyme-catalyzed processes. With contributions from leading academics around the world, this book makes a ground-breaking contribution to this progressive field and is essential reading for graduates and researchers investigating (bio)catalysis, enzyme engineering, chemical biology, and synthetic biology.
This book discusses recent advances in theoretical–computational studies on the biosynthesis of melanin pigment (melanogenesis). These advances are being driven by the development of high-performance computers, new experimental findings, and extensive work on medical applications involving the control of pigmentation and the treatment of challenging dermatological diseases. Understanding the elementary processes involved in chemical reactions at the atomic scale is important in biochemical reaction design for effective control of the pigmentary system. Accordingly, the book focuses on the elementary steps involved in melanogenesis, which crucially affect the composition of the resulting melanin pigment by means of competitive reactions. The book also addresses reactions analogous to melanogenesis, with a focus on o-quinone reactions, which are especially important for understanding melanogenesis-associated cytotoxicity.
This book describes the essential steps in the development of biocatalytic processes from concept to completion. It is a carefully integrated text which combines the fundamentals of biocatalysis with technological experience and in-depth commercial case studies. The book starts with an introductory look at the characteristics and present applications of biocatalysts, followed by more detailed overviews of these areas.