You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In response to a request from Congress, Surface Temperature Reconstructions for the Last 2,000 Years assesses the state of scientific efforts to reconstruct surface temperature records for Earth during approximately the last 2,000 years and the implications of these efforts for our understanding of global climate change. Because widespread, reliable temperature records are available only for the last 150 years, scientists estimate temperatures in the more distant past by analyzing "proxy evidence," which includes tree rings, corals, ocean and lake sediments, cave deposits, ice cores, boreholes, and glaciers. Starting in the late 1990s, scientists began using sophisticated methods to combine proxy evidence from many different locations in an effort to estimate surface temperature changes during the last few hundred to few thousand years. This book is an important resource in helping to understand the intricacies of global climate change.
Computer vision systems attempt to understand a scene and its components from mostly visual information. The geometry exhibited by the real world, the influence of material properties on scattering of incident light, and the process of imaging introduce constraints and properties that are key to solving some of these tasks. In the presence of noisy observations and other uncertainties, the algorithms make use of statistical methods for robust inference. In this paper, we highlight the role of geometric constraints in statistical estimation methods, and how the interplay of geometry and statistics leads to the choice and design of algorithms. In particular, we illustrate the role of imaging, illumination, and motion constraints in classical vision problems such as tracking, structure from motion, metrology, activity analysis and recognition, and appropriate statistical methods used in each of these problems.
Similarity between objects plays an important role in both human cognitive processes and artificial systems for recognition and categorization. How to appropriately measure such similarities for a given task is crucial to the performance of many machine learning, pattern recognition and data mining methods. This book is devoted to metric learning, a set of techniques to automatically learn similarity and distance functions from data that has attracted a lot of interest in machine learning and related fields in the past ten years. In this book, we provide a thorough review of the metric learning literature that covers algorithms, theory and applications for both numerical and structured data....
The four-volume set LNCS 6492-6495 constitutes the thoroughly refereed post-proceedings of the 10th Asian Conference on Computer Vision, ACCV 2009, held in Queenstown, New Zealand in November 2010. All together the four volumes present 206 revised papers selected from a total of 739 Submissions. All current issues in computer vision are addressed ranging from algorithms that attempt to automatically understand the content of images, optical methods coupled with computational techniques that enhance and improve images, and capturing and analyzing the world's geometry while preparing the higher level image and shape understanding. Novel geometry techniques, statistical learning methods, and modern algebraic procedures are dealt with as well.
The Autry family of the Southern States and Texas, 1745-1963.
An introduction to the techniques and algorithms of the newest field in robotics. Probabilistic robotics is a new and growing area in robotics, concerned with perception and control in the face of uncertainty. Building on the field of mathematical statistics, probabilistic robotics endows robots with a new level of robustness in real-world situations. This book introduces the reader to a wealth of techniques and algorithms in the field. All algorithms are based on a single overarching mathematical foundation. Each chapter provides example implementations in pseudo code, detailed mathematical derivations, discussions from a practitioner's perspective, and extensive lists of exercises and class projects. The book's Web site, www.probabilistic-robotics.org, has additional material. The book is relevant for anyone involved in robotic software development and scientific research. It will also be of interest to applied statisticians and engineers dealing with real-world sensor data.
Bayesian probability theory has emerged not only as a powerful tool for building computational theories of vision, but also as a general paradigm for studying human visual perception. This 1996 book provides an introduction to and critical analysis of the Bayesian paradigm. Leading researchers in computer vision and experimental vision science describe general theoretical frameworks for modelling vision, detailed applications to specific problems and implications for experimental studies of human perception. The book provides a dialogue between different perspectives both within chapters, which draw on insights from experimental and computational work, and between chapters, through commentaries written by the contributors on each others' work. Students and researchers in cognitive and visual science will find much to interest them in this thought-provoking collection.
This textbook offers a tutorial introduction to robotics and Computer Vision which is light and easy to absorb. The practice of robotic vision involves the application of computational algorithms to data. Over the fairly recent history of the fields of robotics and computer vision a very large body of algorithms has been developed. However this body of knowledge is something of a barrier for anybody entering the field, or even looking to see if they want to enter the field — What is the right algorithm for a particular problem?, and importantly: How can I try it out without spending days coding and debugging it from the original research papers? The author has maintained two open-source MA...