You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents state-of-the-art research on artificial intelligence and blockchain for future cybersecurity applications. The accepted book chapters covered many themes, including artificial intelligence and blockchain challenges, models and applications, cyber threats and intrusions analysis and detection, and many other applications for smart cyber ecosystems. It aspires to provide a relevant reference for students, researchers, engineers, and professionals working in this particular area or those interested in grasping its diverse facets and exploring the latest advances on artificial intelligence and blockchain for future cybersecurity applications.
In recent years, a considerable amount of effort has been devoted to cyber-threat protection of computer systems which is one of the most critical cybersecurity tasks for single users and businesses since even a single attack can result in compromised data and sufficient losses. Massive losses and frequent attacks dictate the need for accurate and timely detection methods. Current static and dynamic methods do not provide efficient detection, especially when dealing with zero-day attacks. For this reason, big data analytics and machine intelligencebased techniques can be used. This book brings together researchers in the field of big data analytics and intelligent systems for cyber threat in...
Today, the use of machine intelligence, expert systems, and analytical technologies combined with Big Data is the natural evolution of both disciplines. As a result, there is a pressing need for new and innovative algorithms to help us find effective and practical solutions for smart applications such as smart cities, IoT, healthcare, and cybersecurity. This book presents the latest advances in big data intelligence for smart applications. It explores several problems and their solutions regarding computational intelligence and big data for smart applications. It also discusses new models, practical solutions,and technological advances related to developing and transforming cities through machine intelligence and big data models and techniques. This book is helpful for students and researchers as well as practitioners.
As cloud services become increasingly popular, safeguarding sensitive data has become paramount. Privacy Preservation and Secured Data Storage in Cloud Computing is a comprehensive book that addresses the critical concerns surrounding privacy and security in the realm of cloud computing. Beginning with an introduction to cloud computing and its underlying technologies, the book explores various models of cloud service delivery. It then delves into the challenges and risks associated with storing and processing data in the cloud, including data breaches, insider threats, and third-party access. The book thoroughly examines techniques and tools to enhance privacy and security in the cloud, cov...
With the advancement of sensorial media, objects, and technologies, multimedia can play a significant role in smart healthcare by offering better insight of heterogeneous healthcare multimedia content to support affordable and quality patient care. While researchers and the scientific community have been making advances in the study of multimedia tools and healthcare services individually, very little attention has been given to developing cost effective and affordable smart healthcare services. Multimedia-based smart healthcare has the potential to revolutionize many aspects of our society; however, many technical challenges must be addressed before this potential can be realized. Using Mul...
The world of pharmaceutical research is moving at lightning speed, and the age-old approach to drug discovery faces many challenges. It's a fascinating time to be on the cutting edge of medical innovation, but it's certainly not without its obstacles. The process of developing new drugs is often time-consuming, expensive, and fraught with uncertainty. Researchers are constantly seeking ways to streamline this process, reduce costs, and increase the success rate of bringing new drugs to market. One promising solution lies in the convergence of pharmacy science and engineering, particularly in computational drug discovery. Converging Pharmacy Science and Engineering in Computational Drug Disco...
Computational Intelligence for Medical Internet of Things (MIoT) Applications: Machine Intelligence Applications for IoT in Healthcare explores machine intelligence techniques necessary for effective MIoT research and practice, taking a practical approach for practitioners and students entering the field. This book investigates advanced concepts and applications in the MIoT field, guiding readers through emerging developments and future trends. A wide range of international authors guide readers through advanced concepts, including deep learning, neural network, and big data analytic approaches for the classification, indexing, retrieval, analysis, and inferencing of healthcare data. - Presents the state-of-the-art in machine intelligence and related technologies and methodologies for IoT in healthcare - Discusses emerging developments and trends in machine intelligence for business and decision-making strategy in healthcare - Features new models, practical solutions, prototypes, frameworks and technological advances related to machine intelligence for MIoT applications
This book includes original, peer-reviewed articles from the 2nd International Conference on Cognitive & Intelligent Computing (ICCIC-2022), held at Vasavi College of Engineering Hyderabad, India. It covers the latest trends and developments in areas of cognitive computing, intelligent computing, machine learning, smart cities, IoT, artificial intelligence, cyber-physical systems, cybernetics, data science, neural network, and cognition. This book addresses the comprehensive nature of computational intelligence, cognitive computing, AI, ML, and DL to emphasize its character in modeling, identification, optimization, prediction, forecasting, and control of future intelligent systems. Submissions are original, unpublished, and present in-depth fundamental research contributions either from a methodological/application perspective in understanding artificial intelligence and machine learning approaches and their capabilities in solving diverse range of problems in industries and its real-world applications.
In today's digital age, the exponential growth of cloud computing services has brought significant opportunities for businesses and individuals alike. However, this surge in cloud adoption has also ushered in a host of critical concerns, with the paramount issues being data privacy and security. The goal of protecting sensitive information from cyber threats and ensuring confidentiality has become increasingly challenging for organizations across industries. Emerging Technologies and Security in Cloud Computing is a comprehensive guide designed to tackle these pressing concerns head-on. This authoritative book provides a robust framework for understanding and addressing the multifaceted issues surrounding data privacy and security in the cloud. It serves as a beacon of knowledge for academic scholars, researchers, and IT professionals seeking practical solutions to safeguard sensitive data.
The rapid evolution of software engineering demands innovative approaches to meet the growing complexity and scale of modern software systems. Traditional methods often need help to keep pace with the demands for efficiency, reliability, and scalability. Manual development, testing, and maintenance processes are time-consuming and error-prone, leading to delays and increased costs. Additionally, integrating new technologies, such as AI, ML, Federated Learning, and Large Language Models (LLM), presents unique challenges in terms of implementation and ethical considerations. Advancing Software Engineering Through AI, Federated Learning, and Large Language Models provides a compelling solution by comprehensively exploring how AI, ML, Federated Learning, and LLM intersect with software engineering. By presenting real-world case studies, practical examples, and implementation guidelines, the book ensures that readers can readily apply these concepts in their software engineering projects. Researchers, academicians, practitioners, industrialists, and students will benefit from the interdisciplinary insights provided by experts in AI, ML, software engineering, and ethics.