You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
Over the past several years, embedded systems have emerged as an integral though unseen part of many consumer, industrial, and military devices. The explosive growth of these systems has resulted in embedded computing becoming an increasingly important discipline. The need for designers of high-performance, application-specific computing systems has never been greater, and many universities and colleges in the US and worldwide are now developing advanced courses to help prepare their students for careers in embedded computing.High-Performance Embedded Computing: Architectures, Applications, and Methodologies is the first book designed to address the needs of advanced students and industry pr...
System-Level Design Techniques for Energy-Efficient Embedded Systems addresses the development and validation of co-synthesis techniques that allow an effective design of embedded systems with low energy dissipation. The book provides an overview of a system-level co-design flow, illustrating through examples how system performance is influenced at various steps of the flow including allocation, mapping, and scheduling. The book places special emphasis upon system-level co-synthesis techniques for architectures that contain voltage scalable processors, which can dynamically trade off between computational performance and power consumption. Throughout the book, the introduced co-synthesis techniques, which target both single-mode systems and emerging multi-mode applications, are applied to numerous benchmarks and real-life examples including a realistic smart phone.
High-Performance Embedded Computing, Second Edition, combines leading-edge research with practical guidance in a variety of embedded computing topics, including real-time systems, computer architecture, and low-power design. Author Marilyn Wolf presents a comprehensive survey of the state of the art, and guides you to achieve high levels of performance from the embedded systems that bring these technologies together. The book covers CPU design, operating systems, multiprocessor programs and architectures, and much more. Embedded computing is a key component of cyber-physical systems, which combine physical devices with computational resources for control and communication. This revised editi...
With the ability to integrate a large number of cores on a single chip, research into on-chip networks to facilitate communication becomes increasingly important. On-chip networks seek to provide a scalable and high-bandwidth communication substrate for multi-core and many-core architectures. High bandwidth and low latency within the on-chip network must be achieved while fitting within tight area and power budgets. In this lecture, we examine various fundamental aspects of on-chip network design and provide the reader with an overview of the current state-of-the-art research in this field. Table of Contents: Introduction / Interface with System Architecture / Topology / Routing / Flow Control / Router Microarchitecture / Conclusions
This book constitutes the refereed proceedings of the 2014 Multidisciplinary International Social Networks Research, MISNC 2014, held in Kaohsiung, Taiwan, in September 2014. The 37 full papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on electronic commerce, e-business management, and social networks; social networks issues on sociology, politics and statistics; information technology for social networks analysis and mining; social networks for global eHealth and bio-medics; security, open data, e-learning and other related topics; intelligent data analysis and its applications.
Developing NoC based interconnect tailored to a particular application domain, satisfying the application performance constraints with minimum power-area overhead is a major challenge. With technology scaling, as the geometries of on-chip devices reach the physical limits of operation, another important design challenge for NoCs will be to provide dynamic (run-time) support against permanent and intermittent faults that can occur in the system. The purpose of Designing Reliable and Efficient Networks on Chips is to provide state-of-the-art methods to solve some of the most important and time-intensive problems encountered during NoC design.
Welcome to the proceedings of PATMOS 2003. This was the 13th in a series of international workshops held in several locations in Europe. Over the years, PATMOS has gained recognition as one of the major European events devoted to power and timing aspects of integrated circuit and system design. Despite its signi?cant growth and development, PATMOS can still be considered as a very informal forum, featuring high-level scienti?c presentations together with open discussions and panel sessions in a free and relaxed environment. This year, PATMOS took place in Turin, Italy, organized by the Politecnico di Torino, with technical co-sponsorship from the IEEE Circuits and Systems Society and the gen...
This volume introduces innovative power estimation and optimization methodologies to support the design of low power embedded systems based on high-performance VLIW microprocessors. A VLIW processor is a (generally) pipelined processor that can execute, in each clock cycle, a set of explicitly parallel operations.
Conventional on-chip communication design mostly use ad-hoc approaches that fail to meet the challenges posed by the next-generation MultiCore Systems on-chip (MCSoC) designs. These major challenges include wiring delay, predictability, diverse interconnection architectures, and power dissipation. A Network-on-Chip (NoC) paradigm is emerging as the solution for the problems of interconnecting dozens of cores into a single system on-chip. However, there are many problems associated with the design of such systems. These problems arise from non-scalable global wire delays, failure to achieve global synchronization, and difficulties associated with non-scalable bus-based functional interconnect...