You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is the Proceedings of III Advanced Ceramics and Applications conference, held in Belgrade, Serbia in 2014. It contains 25 papers on various subjects regarding preparation, characterization and application of advanced ceramic materials.
Ein wichtiges Lehrwerk für ein zunehmend wichtiges Fachgebiet: gelungene Einführung, prägnante Darstellung der Grundlagen der Membranseparation, Überblick über Charakterisierungstechniken für keramische Membranen, industrielle Anwendungen und deren Wirtschaftlichkeit.
This book presents a comprehensive overview of the freezing of colloidal suspensions and explores cutting-edge research in the field. It is the first book to deal with this phenomenon from a multidisciplinary perspective, and examines the various occurrences, their technological uses, the fundamental phenomena, and the different modeling approaches. Its chapters integrate input from fields as diverse as materials science, physics, biology, mathematics, geophysics, and food science, and therefore provide an excellent point of departure for anyone interested in the topic. The main content is supplemented by a wealth of figures and illustrations to elucidate the concepts presented, and includes a final chapter providing advice for those starting out in the field. As such, the book provides an invaluable resource for materials scientists, physicists, biologists, and mathematicians, and will also benefit food engineers, civil engineers, and materials processing professionals.
This reference book originates from the interdisciplinary research cooperation between academia and industry. In three distinct parts, latest results from basic research on stable enzymes are explained and brought into context with possible industrial applications. Downstream processing technology as well as biocatalytic and biotechnological production processes from global players display the enormous potential of biocatalysts. Application of "extreme" reaction conditions (i.e. unconventional, such as high temperature, pressure, and pH value) - biocatalysts are normally used within a well defined process window - leads to novel synthetic effects. Both novel enzyme systems and the synthetic routes in which they can be applied are made accessible to the reader. In addition, the complementary innovative process technology under unconventional conditions is highlighted by latest examples from biotech industry.
Creep and Fatigue in Polymer Matrix Composites, Second Edition, updates the latest research in modeling and predicting creep and fatigue in polymer matrix composites. The first part of the book reviews the modeling of viscoelastic and viscoplastic behavior as a way of predicting performance and service life. Final sections discuss techniques for modeling creep rupture and failure and how to test and predict long-term creep and fatigue in polymer matrix composites. - Reviews the latest research in modeling and predicting creep and fatigue in polymer matrix composites - Puts a specific focus on viscoelastic and viscoplastic modeling - Features the time-temperature-age superposition principle for predicting long-term response - Examines the creep rupture and damage interaction, with a particular focus on time-dependent failure criteria for the lifetime prediction of polymer matrix composite structures that are illustrated using experimental cases
A comprehensive volume on interfacial catalysis, this book includes contributions from an international group of specialists in chemistry, environmental science, informatics, physiology, nuclear energy, and physics. The editor has organized the material into the main topics of fundamental characteristics, phase transfer catalysis, reversed micelles, biological aspects, and interfacial photocatalysis. Individual topics include self-organized microheterogeneous structures, nanochemistry, interfacial catalysis in metal complexation, the role of water molecules in ion transfer at the oil/water interface, and ultrathin films in enhanced oil recovery.
A comprehensive overview of the unique porous silica structure of diatoms, their mechanism of formation, properties and applications.
This book provides an analysis of the reaction mechanisms relevant to a number of processes in which CO2 is converted into valuable products. Several different processes are considered that convert CO2 either in specialty chemicals or in bulk products or fuels. For each reaction, the mechanism is discussed and the assessed steps besides the dark sites of the reaction pathway are highlighted. From the insertion of CO2 into E-X bonds to the reduction of CO2 to CO or other C1 molecules or else to C2 or Cn molecules, the reactions are analysed in order to highlight the known and obscure reaction steps. Besides well known reaction mechanisms and energy profiles, several lesser known situations are discussed. Advancing knowledge of the latter would help to develop efficient routes for the conversion of CO2 into valuable products useful either in the chemical or in the energy industry. The content of this book is quite different from other books reporting the use of CO2. On account of its clear presentation, “Reaction Mechanisms in Carbon Dioxide Conversion” targets in particular researchers, teachers and PhD students.