You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The only known effective therapy for lethal disturbances in cardiac rhythm is de?brillation, the delivery of a strong electric shock to the heart. This technique constitutes the most important means for prevention of sudden cardiac death. The efficacy of defibrillation has led to an exponential growth in the number of patients receiving implantable devices. The objective of this book is to present contemporary views on the basic mechanisms by which the heart responds to an electric shock, as well as on the challenges and implications of clinical defibrillation. Basic science chapters elucidate questions such as lead configurations and the reasons by which a defibrillation shock fails. Chapters devoted to the challenges in the clinical procedure of defibrillation address issues related to inappropriate and unnecessary shocks, complications associated with the implantation of cardioverter/defibrillator devices, and the application of the therapy in pediatric patients and young adults. The book also examines the implications of defibrillation therapy, such as patient risk stratification, cardiac rehabilitation, and remote monitoring of patient with implantable devices.
The updated and expanded second edition of this book presents a contemporary review of the basic science, engineering technology, and clinical practice of cardiac bioelectric therapy. It covers the rapidly expanding technological development of pacemakers and defibrillators as well as ablative therapy, electrophysiological mapping, and other clinical diagnostic and therapeutic breakthroughs. The book highlights many different aspects of bioelectric therapy, including history, biophysical and computational concepts, basic electrophysiology studies, engineering technology advances, and clinical perspectives. In this revised edition, leading clinical and basic electrophysiologists share their p...
The American Heart Association’s Scientific Sessions 2016 is bringing big science, big technology, and big networking opportunities to New Orleans, Louisiana this November. This event features five days of the best in science and cardiovascular clinical practice covering all aspects of basic, clinical, population and translational content.
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
This book on modelling the electrical activity of the heart is an attempt to describe continuum based modelling of cardiac electrical activity from the cell level to the body surface (the forward problem), and back again (the inverse problem). Background anatomy and physiology is covered briefly to provide a suitable context for understanding the detailed modelling that is presented herein. The questions of what is mathematical modelling and why one would want to use mathematical modelling are addressed to give some perspective to the philosophy behind our approach. Our view of mathematical modelling is broad ? it is not simply about obtaining a solution to a set of mathematical equations, but includes some material on aspects such as experimental and clinical validation.
This book explores Systems Biology as the understanding of biological network behaviors, and in particular their dynamic aspects, which requires the utilization of mathematical modeling tightly linked to experiment. A variety of approaches are discussed here: the identification and validation of networks, the creation of appropriate datasets, the development of tools for data acquisition and software development, and the use of modeling and simulation software in close concert with experiment.
Cardiac Mapping is the cardiac electrophysiologist’s GPS. It will guide you to new places in the heart and help you find the old places more easily...a valuable addition to your bookshelf Douglas P. Zipes, from the Foreword. Over the course of three previous editions, this book has become the acknowledged gold standard reference on the electro-anatomical mapping of the heart. This new edition features greatly expanded coverage—the number of chapters have doubled to 80 with 40 new chapters—on leading edge science, new clinical applications and future frontiers, authored by a who’s-who of global electrophysiology. This unique text offers truly comprehensive coverage of all areas of car...
Cardiac Electrophysiology: From Cell to Bedside puts the latest knowledge in this subspecialty at your fingertips, giving you a well-rounded, expert grasp of every cardiac electrophysiology issue that affects your patient management. Drs. Zipes, Jalife, and a host of other world leaders in cardiac electrophysiology use a comprehensive, multidisciplinary approach to guide you through all of the most recent cardiac drugs, techniques, and technologies. Get well-rounded, expert views of every cardiac electrophysiology issue that affects your patient management from preeminent authorities in cardiology, physiology, pharmacology, pediatrics, biophysics, pathology, cardiothoracic surgery, and biome...
Leading researchers have contributed state-of-the-art chapters to this overview of high-performance computing in biomedical research. The book includes over 30 pages of color illustrations. Some of the important topics featured in the book include the following: