You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book covers polymer 3D printing through basics of technique and its implementation. It begins with the discussion on fundamentals of new-age printing, know-how of technology, methodology of printing, and product design perspectives. It includes aspects of CAD along with uses of Slicer software, image analysis software and MATLAB® programming in 3D printing of polymers. It covers choice of polymers for printing subject to their structure–property relationship, troubleshooting during printing, and possible uses of waste plastics and other waste materials. Key Features Explores polymeric material printing and design Provides information on the potential for the transformation and manufacturing, reuse and recycling of polymeric material Includes comparison of 3D printing and injection moulding Discusses CAD design and pertinent scaling-up process related to polymers Offers basic strategies for improvement and troubleshooting of 3D printing This book is aimed at professionals and graduate students in polymer and mechanical engineering and materials science and engineering.
This book provides a detailed overview of different devices and nanomaterials for energy storage applications. The application of each nanomaterial is discussed for fuel cells, metal–air batteries, supercapacitors, solar cells, regenerative fuel cells, hydrogen energy, batteries, and redox flow batteries to understand the reaction process and material performance improvement for energy storage devices. In addition, major challenges, case studies, historical, and future perspective are summarized. Features: Summarizes state-of-the-art nanomaterials for energy storage and conversion applications Comprehensive coverage of a wide range of nanomaterials, including synthesis and characterization Details different energy storage devices, construction, working principles, and major challenges Covers specific reactions, nanomaterials, and nanocomposites via audio–video slides/short films Includes case studies pertaining to development of energy storage devices and major challenges This book is aimed at researchers and graduate students in chemical engineering, chemical sciences, nanomaterials, and energy engineering/conversion.
The presence of refractory organic compounds in wastewater is a global problem. Advanced oxidation processes, in general, and the Fenton oxidation process are alternative technologies for wastewater and water treatment. This book gives an overview of Fenton process principles, explains the main factors influencing this technology, includes applications, kinetic and thermodynamic calculations and presents a strong overview on the heterogeneous catalytic approach. It demonstrates that the iron-based heterogeneous Fenton process, including nanoparticles, a new complex solution, is highly efficient, environmentally friendly and can be suitable for wastewater treatment and industrial wastewater. ...
Volume 3 covers recent research with expanded coverage on this important area of remediation. Mycoremediation is the form of bioremediation in which fungi-based technology is used to decontaminate the environment. Fungi are among the primary saprotrophic organisms in an ecosystem, as they are efficient in the decomposition of organic matter. Wood-decay fungi, especially white rot, secretes extracellular enzymes and acids that break down lignin and cellulose. Fungi have been proven to be a very cost-effective and environmentally-friendly way for helping to remove a wide array of toxins from damaged environments or wastewater. These toxins include heavy metals, persistent organic pollutants, t...
This collection aims to explore the transformative potential of computer vision and artificial intelligence (AI) in revolutionizing medical imaging. Medical imaging is still in a state of infancy. The interpretation of medical images is often time-consuming and subject to human error. By leveraging computer vision algorithms and AI technologies, medical imaging can be enhanced with automated analysis, pattern recognition, and predictive modelling, leading to improved accuracy, speed, and clinical outcomes. This collection provides an overview of the current state, challenges, and prospects of integrating computer vision and AI techniques into existing medical imaging technologies. Medical imaging has the potential to create a paradigm shift in healthcare in future enhancing diagnostic accuracy, personalised treatment, and overall patient care. While challenges related to data quality, interpretability, and ethics must be navigated, the future for AI based imaging technology is bright.
Nanomaterials for Energy Applications provides readers with an in-depth understanding of advanced nanomaterials and their applications in energy generation and utilization concepts. It focuses on emerging nanomaterials and applications in various energy-related fields. Describes nanomaterials for use in photovoltaic cells, solid state lighting, fuel cells, electrochemical batteries, electrochemical capacitors, superconductors, hydrogen storage, and photocatalysts. Focuses on commercial and economic aspects. Includes case studies drawn from practical research. This book is aimed at researchers, advanced students, and practicing engineers in the disciplines of materials, mechanical, electrical, and related fields of engineering.
This book initiates with an introduction to polymeric materials, followed by various classifications and properties of polymeric implant material including various development methods of polymeric materials and their characterization techniques. An overview of various toxicology assessments of polymeric materials and polymeric materials for drug delivery system is also included. Design and analysis of polymeric materials-based components using Ansys software along with polymeric materials for additively manufactured artificial organs are also discussed. Features: Addresses assessment of polymeric materials in biomedical sciences, including classification, properties, and development of polymeric implants Covers various topics in the field of tissue regeneration Discusses biocompatibility, toxicity, and biodegradation of polymeric materials Explores wide-scale characterization to study the effect of inclusion size on the mechanical properties of polymeric materials Reviews limitations and future directions on polymeric material with emphasis on biocompatibility This book is aimed at graduate students and researchers in biomaterials, biomedical engineering, composites, and polymers.
Lists of the most popular or delicious dishes in the world always include Thai food. Sriracha sauce has gone from a dipping sauce made in a small town in Thailand to become a recognizable flavor in cuisine worldwide. With a reputation of being hot and spicy, it is not uncommon to see those who try Thai food for the first time shedding tears and sporting a red nose. Yet, the Thai national cuisine has gained a high degree of global recognition and admiration despite Thailand being a relatively small country. Is this down to sheer luck, its being an extensive work of art, or, possibly, because of scientific literacy? The Science of Thai Cuisine: Chemical Properties and Sensory Attributes approa...
The increasing availability and decreasing costs of 3D printing and bioprinting technologies are expanding opportunities to meet medical needs. 3D Printing and Bioprinting for Pharmaceutical and Medical Applications discusses emerging approaches related to these game-changer technologies in such areas as drug development, medical devices, and bioreactors. Key Features: Offers an overview of applications, the market, and regulatory analysis Analyzes market research of 3D printing and bioprinting technologies Reviews 3D printing of novel pharmaceutical dosage forms for personalized therapies and for medical devices, as well as the benefits of 3D printing for training purposes Covers 3D bioprin...
This book aims to provide readers with some of the current trends in microemulsions as scalable chemical nanoreactors. The chapters include discussions on microemulsions as reaction media, taking advantage of both the special behavior of trapped water inside their microdroplets and their potential use as a template for nanomaterials. The information contained in this book covers topics that will be of interest to students and researchers in physical chemistry, chemical engineering, and material science. In addition, this book will serve as a tribute in memoriam to Prof. Julio Casado, Professor of Physical Chemistry at the Universities of Santiago de Compostela and Salamanca and Doctor Honoris Causa from the University of Vigo, who died on April 2, 2018. Sit tibi terra levis.