You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents selected contributions from ICMFM XX and the Polish National Conference—KKMP. The XX International Colloquium on Mechanical Fatigue of Metals (ICMFM XX) was organized on 15–17 September 2021, in the Faculty of Mechanical Engineering of the Wroclaw University of Science and Technology, in Wrocław City, Poland, in a remote form. Its aim was to facilitate and encourage the exchange of knowledge and experiences among the different communities involved in both basic and applied research in the field of fatigue of metals, looking at the problem of fatigue from a multiscale perspective, and exploring analytical and numerical simulative approaches, without losing the perspectives of the application. The Polish National Conference—KKMP 2021—was organized remotely with 50–80 prominent international participants from the fracture mechanics community.
This book contains full papers presented at the First Virtual Conference on Mechanical Fatigue (VCMF 2020), which was organised by the University of Porto (FEUP, Portugal), the Wroclaw University of Science and Technology (Poland), University of Electronic Science and Technology of China (China), Siberian Federal University (Russia), and the ESIS/TC12 Technical Committee (European Structural Integrity Society–ESIS), between 9 and 11 of September 2020. This conference was intended to be a forum of discussion of new research concepts, equipment, technology, materials and structures and other scientific advances within the field of mechanical fatigue and fracture. The first edition of the VCMF 2020 event has reached more than 60 participants from more than 20 nationalities demonstrating the vitality of this new event.
This book addresses the fatigue behavior of riveted connections from ancient Portuguese metallic bridges as well as the fatigue crack propagation behavior of related materials. Some examples of the fatigue assessment of long-term operated metallic bridges are presented and discussed. The phenomena of degradation is discussed in chapter 2, devoted to the material aspects of the Degradation Theory. Applications of structural integrity assessment/ corrosion aspects are discussed in chapter 3; case studies in chapter 4 and fatigue and fracture test results in chapter 5.
This second of three volumes includes papers from the second series of NODYCON which was held virtually in February of 2021. The conference papers reflect a broad coverage of topics in nonlinear dynamics, ranging from traditional topics from established streams of research to those from relatively unexplored and emerging venues of research. These include · Nonlinear vibration control · Control of nonlinear systems and synchronization · Experimental dynamics · System identification and SHM · Multibody dynamics
The book presents some of the latest experimental achievements in the mechanics of solids, machine design, mechanical engineering, biomechanics, composites, adhesive joints, laminates, coating techniques, bridge joints, data analysis, fatigue cracks, cyclic properties of metals, vibrational control systems etc.
This book covers most of the damage mechanism in the scope of mechanical engineering and civil engineering. The failure pattern of various materials and structures is mainly discussed. The sub-topics covers fatigue damage, fatigue crack initiation and propagation, life prediction techniques, computational fracture mechanics, dynamic fracture, damage mechanics and assessment, non-destructive test (NDT), concrete failure assessment, failure on soil structures, structural durability and reliability, structural health monitoring, construction damage recovery, and any relevant topics related to failure analysis.
The use of composite materials has grown exponentially in the last decades and has affected many engineering fields due to their enhanced mechanical properties and improved features with respect to conventional materials. For instance, they are employed in civil engineering (seismic isolators, long-span bridges, vaults), mechanical engineering (turbines, machine components), aerospace and naval engineering (fuselages, boat hulls and sails), automotive engineering (car bodies, tires), and biomechanical engineering (prostheses).Nevertheless, the greater use of composites requires a rapid progress in gaining the needed knowledge to design and manufacture composite structures. Thus, researchers ...
It is well-known that the topic of composite mate- rials affects many engineering fields, such as civil, mechanical, aerospace, automotive and chemical. In the last decades, in fact, a huge number of scientific papers concerning these peculiar constituents has been published. Analogously, the industrial progress has been extremely noticeable. The study of composite materials, in general, is a challenging activity since the advancements both in the academia and in the industry provide continually new sparks to develop innovative ideas and applications. The communication, the sharing and the exchange of views can surely help the works of many researchers. This aspect represents the main purpos...
The idea of preparing an Energies Special Issue on “Structural Prognostics and Health Management in Power & Energy Systems” is to compile information on the recent advances in structural prognostics and health management (SPHM). Continued improvements on SPHM have been made possible through advanced signature analysis, performance degradation assessment, as well as accurate modeling of failure mechanisms by introducing advanced mathematical approaches/tools. Through combining deterministic and probabilistic modeling techniques, research on SPHM can provide assurance for new structures at a design stage and ensure construction integrity at a fabrication phase. Specifically, power and ener...