You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Multivariate polysplines are a new mathematical technique that has arisen from a synthesis of approximation theory and the theory of partial differential equations. It is an invaluable means to interpolate practical data with smooth functions. Multivariate polysplines have applications in the design of surfaces and "smoothing" that are essential in computer aided geometric design (CAGD and CAD/CAM systems), geophysics, magnetism, geodesy, geography, wavelet analysis and signal and image processing. In many cases involving practical data in these areas, polysplines are proving more effective than well-established methods, such as kKriging, radial basis functions, thin plate splines and minimu...
Clifford Algebras continues to be a fast-growing discipline, with ever-increasing applications in many scientific fields. This volume contains the lectures given at the Fourth Conference on Clifford Algebras and their Applications in Mathematical Physics, held at RWTH Aachen in May 1996. The papers represent an excellent survey of the newest developments around Clifford Analysis and its applications to theoretical physics. Audience: This book should appeal to physicists and mathematicians working in areas involving functions of complex variables, associative rings and algebras, integral transforms, operational calculus, partial differential equations, and the mathematics of physics.
Security environment is characterized by deep uncertainty. Threats are being posed not only by adversary (political) forces but may also come from natural challenges. This title reflects the initial state of a dialogue between specialists in security and specialists in mathematics, computer and information sciences on security topics.
Highlights research in derivatives modelling and markets in a post-crisis world across a number of dimensions or themes. This book addresses the following main areas: derivatives models and pricing, model application and performance backtesting, and new products and market features.
This book constitutes the refereed proceedings of the 10th IMA International Conference on the Mathematics of Surfaces, held in Leeds, UK in September 2003. The 25 revised full papers presented were carefully reviewed and selected from numerous submissions. Among the topics addressed are triangulated surface parameterization, bifurcation structures, control vertex computation, polyhedral surfaces, watermarking 3D polygonal meshed, subdivision surfaces, surface reconstruction, vector transport, shape from shading, surface height recovery, algebraic surfaces, box splines, the Plateau-Bezier problem, spline geometry, generative geometry, manifold representation, affine arithmetic, and PDE surfaces.
Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics bridges the gap between astronomy and geoscience in the context of applications, techniques and key principles of big data. Machine learning and parallel computing are increasingly becoming cross-disciplinary as the phenomena of Big Data is becoming common place. This book provides insight into the common workflows and data science tools used for big data in astronomy and geoscience. After establishing similarity in data gathering, pre-processing and handling, the data science aspects are illustrated in the context of both fields. Software, hardware and algorithms of big data are addressed. Finally, the book offers insight into the emerging science which combines data and expertise from both fields in studying the effect of cosmos on the earth and its inhabitants.
The contributions to this volume cover a wide spectrum of recent developments in geophysical data inversion, including basic mathematics and general theory, numerical methods, as well as computer implementation of algorithms. Most of the papers are motivated by problems arising from geophysical research and applications both on a global scale and with respect to local geophysical surveys, underlining the increasing importance of geophysical exploration methods in various fields, such as structural geology, prospecting for mineral and energy resources, hydro geology, geotechnology, environmental protection and archaeology. The first section of the book deals with basic mathematics and general...
A co-publication of the AMS and Bar-Ilan University This volume contains the proceedings of the Seventh International Conference on Complex Analysis and Dynamical Systems, held from May 10–15, 2015, in Nahariya, Israel. The papers in this volume range over a wide variety of topics in the interaction between various branches of mathematical analysis. Taken together, the articles collected here provide the reader with a panorama of activity in complex analysis, geometry, harmonic analysis, and partial differential equations, drawn by a number of leading figures in the field. They testify to the continued vitality of the interplay between classical and modern analysis.
This is the collection of the refereed and edited papers presented at the 8th Texas International Conference on Approximation Theory. It is interdisciplinary in nature and consists of two volumes. The central theme of Vol. I is the core of approximation theory. It includes such important areas as qualitative approximations, interpolation theory, rational approximations, radial-basis functions, and splines. The second volume focuses on topics related to wavelet analysis, including multiresolution and multi-level approximation, subdivision schemes in CAGD, and applications.