You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Retaining the comprehensive and in-depth approach that cemented the bestselling first edition's place as a standard reference in the field, the Handbook of Semiconductor Manufacturing Technology, Second Edition features new and updated material that keeps it at the vanguard of today's most dynamic and rapidly growing field. Iconic experts Robert Doering and Yoshio Nishi have again assembled a team of the world's leading specialists in every area of semiconductor manufacturing to provide the most reliable, authoritative, and industry-leading information available. Stay Current with the Latest Technologies In addition to updates to nearly every existing chapter, this edition features five enti...
Rapid thermal and integrated processing is an emerging single-wafer technology in ULSI semiconductor manufacturing, electrical engineering, applied physics and materials science. Here, the physics and engineering of this technology are discussed at the graduate level. Three interrelated areas are covered. First, the thermophysics of photon-induced annealing of semiconductor and related materials, including fundamental pyrometry and emissivity issues, the modelling of reactor designs and processes, and their relation to temperature uniformity. Second, process integration, treating the advances in basic equipment design, scale-up, integrated cluster-tool equipment, including wafer cleaning and integrated processing. Third, the deposition and processing of thin epitaxial, dielectric and metal films, covering selective deposition and epitaxy, integrated processing of layer stacks, and new areas of potential application, such as the processing of III-V semiconductor structures and thin- film head processing for high-density magnetic data storage.
Diagnostic characterization techniques for semiconductor materials, devices and device processing are addressed at this symposium. It will cover new techniques as well as advances in routine analytical technology applied to semiconductor process development and manufacture. The hardcover edition includes a CD-ROM of ECS Transactions, Volume 10, Issue 1, Analytical Techniques for Semiconductor Materials and Process Characterization 5 (ALTECH 2007). The PDF edition also includes the ALTECH 2007 papers.
Nanostructured materials is one of the hottest and fastest growing areas in today's materials science field, along with the related field of solid state physics. Nanostructured materials and their based technologies have opened up exciting new possibilites for future applications in a number of areas including aerospace, automotive, x-ray technology, batteries, sensors, color imaging, printing, computer chips, medical implants, pharmacy, and cosmetics. The ability to change properties on the atomic level promises a revolution in many realms of science and technology. Thus, this book details the high level of activity and significant findings are available for those involved in research and d...
This issue covers, in detail, all aspects of the physics and the technology of high dielectric constant gate stacks, including high mobility substrates, high dielectric constant materials, processing, metals for gate electrodes, interfaces, physical, chemical, and electrical characterization, gate stack reliability, and DRAM and non-volatile memories.
The thermal processing of materials ranges from few fem to seconds by Swift Heavy Ion Implantation to about one second using advanced Rapid Thermal Annealing. This book offers after an historical excursus selected contributions on fundamental and applied aspects of thermal processing of classical elemental semiconductors and other advanced materials including nanostructures with novel optoelectronic, magnetic, and superconducting properties. Special emphasis is given on the diffusion and segregation of impurity atoms during thermal treatment. A broad range of examples describes the solid phase and/or liquid phase processing of elemental and compound semiconductors, dielectric composites and organic materials.
This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments an...