You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In the automotive industry, a Control Engineer must design a unique control law that is then tested and validated on a single prototype with a level of reliability high enough to to meet a number of complex specifications on various systems. In order to do this, the Engineer uses an experimental iterative process (Trial and Error phase) which relies heavily on his or her experience. This book looks to optimise the methods for synthesising servo controllers ny making them more direct and thus quicker to design. This is achieved by calculating a final controller to directly tackle the high-end system specs.
Supply chains are now more essential than ever to the functioning of our society; however their environmental and societal impacts are often subject to well-founded criticism. Transforming a supply chain to make it more sustainable and responsible often requires a considerable amount of time and resources. The aim of this book is to present a number of simple best practices that can reduce these negative impacts and make supply chains more virtuous. Sustainable Supply Chain Management is a handbook for supply chain transformation. It explores the different facets of the supply chain, from product design or procurement to logistics operations management and performance. It offers a guide to actions for sustainable supply chain transformation, providing elements of the legal framework for possible actions and tools for measuring the performance that can be achieved.
In order to ensure a pedagogical presentation of the fundamentals, this book, which is based on 45 years of experience, endeavors to identify the main principles of the control scheme and its dynamics. The control loop is extensively developed because of the reference it constitutes in control. By establishing the control loop as equivalent to any other control or, more precisely, by making an elementary control loop appear, it becomes possible to reveal a part of this loop in other controls and, thanks to its regulator, qualitatively evaluate the control strategy. A comparative analysis then shows that the complexification of the control scheme does not necessarily go hand in hand with a be...
Decision and Decision-maker in an Industrial Environment developed around the observation that two different decision-makers, faced with the same problem, may not make the same decision. The book proposes explanations for this, ranging from the wholly rational to the irrational, and analyzes different factors in decision-making, such as the intention of the decision-maker, the environment in which their decision is made or the process leading to decision-making. While the common belief is that everything in an industrial environment stems from reasoned decisions, analysis of common practice shows that this is not always the case. This book offers an original perspective by presenting the decision making mechanism from the point of view of the decision maker and their handling of a specific decision-making problem. To learn more about the decision-maker’s motivations when faced with these situations, the authors provide a review of the history of decisionmaking and the major trends in decision-making theory. The concepts and methods are presented with illustrations based on the use of an MES, an industrial management software package.
The risk of explosion is inseparable from industrial activity, as we are often reminded by the news. In order to avoid an explosion, it is necessary to understand the phenomena surrounding it, and take the necessary preventive measures to protect society if it comes to the worst-case scenario. This book will detail these phenomena. The Mechanisms of Explosions presents theoretical aspects from a physicochemical point of view and proposes various methods adapted to each type of explosion, including ATEX explosions. The author shares his knowledge of the mechanisms of explosions, acquired during numerous investigations. These 27 case studies – detailing circumstances, mechanisms and the nature and intensity of explosive effects – were selected to cover all of the possible physical or chemical phenomena, substances and mechanisms, without limiting themselves to the most common situations. This book, packed full of information, is designed to benefit those who analyze and investigate explosions, particularly insurance and judicial experts, prevention engineers, security managers and trainers.
Inventing isn’t easy! In this book, twelve “valleys of death” are identified which, following a linear approach, correspond to the various obstacles that limit the various passages from an original idea to invention, and then to industrial innovation. These various limiting factors have a variety of origins: disciplined scientific training, weak general and scientific culture, New Public Management, hierarchical support, funding, evaluation, proof of concepts, complexity management, and heuristic and interdisciplinary approaches on the one hand, and attractiveness for the new on the other. After an idea is formulated, these contexts bring small elements of science into play, but above all human aspects ranging from motivation and the quality of exchanges to responsibility. In short, it is a possible dynamic way of living together to promote innovations stemming from science. This is not easy, but if the invention is profitable for society, the downstream sector can greatly facilitate the various stages of commercialization.
Inventing isn’t easy! After identifying and presenting the 12 "valleys of death", the real obstacles limiting the transition from an original idea to an innovative one, including the notion of socially responsible research, Knowledge Production Modes between Science and Applications 2 applies the concepts introduced in Volume 1. The book starts off with 3D printing, which has essentially broken through all barriers by offering remarkable advantages over existing mechanical technology. The situation is different for 4D printing and bio-printing. First of all, we need to tackle the complexity inherent in these processes, and move away from disciplinarity to find robust, applicable solutions, despite the obstacles. This is possible in niche areas, but currently, low profitability still limits their general applicability and the willingness of researchers to embrace interdisciplinary convergence....
Organization and Pedagogy of Complexity deals with real systems, their architecture, and speaks of those who design, develop and maintain them. After a summary of the architecture proposed by Daniel Krob, president of CESAMES in Paris, France, the book focuses on the sensor and effector equipment that routes and converts the system's information to the place where it is processed. These are the equivalent of the system's sense organs. It also analyzes the roots of complexity from the perspective of combinatorics: in real systems, everything comes down to cases and/or configurations being validated in greater or lesser numbers, but which must be kept under control. This book presents two case studies, giving a global vision of complexity. Finally, it presents a prospective approach that brings the engineering of artificial systems closer to that of biological systems, based on first-hand information provided by Philippe Kourilsky, Emeritus Professor at the Collège de France.
This volume of three books presents recent advances in modelling, planning and evaluating city logistics for sustainable and liveable cities based on the application of ICT (Information and Communication Technology) and ITS (Intelligent Transport Systems). It highlights modelling the behaviour of stakeholders who are involved in city logistics as well as planning and managing policy measures of city logistics including cooperative freight transport systems in public-private partnerships. Case studies of implementing and evaluating city logistics measures in terms of economic, social and environmental benefits from major cities around the world are also given.
Our transition towards a cleaner and more sustainable future has seen an increase in the use of electrical energy in the functioning of our society. This implies the need to develop tools and methods which allow us to study electromagnetic devices and ensure their functioning for as long as possible. This requires us to use these tools to understand their behavior, not just as one component, but also in the entire systems in which they can be found, throughout their life cycle. This book provides electrical engineering students and researchers with the resources to analyze how synchronous machines behave over their entire field of operation, particularly focusing on hybrid excited synchronous machines (HESMs). The field of HESMs, although not a fundamental problem in the strict sense of the term, provides answers to a range of fundamental problems: the flux weakening of permanent magnet machines, energy optimization, and lastly the increasing costs of rare-earths permanent magnets.