Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Data Driven Treatment Response Assessment and Preterm, Perinatal, and Paediatric Image Analysis
  • Language: en
  • Pages: 189

Data Driven Treatment Response Assessment and Preterm, Perinatal, and Paediatric Image Analysis

  • Type: Book
  • -
  • Published: 2018-09-14
  • -
  • Publisher: Springer

This book constitutes the refereed joint proceedings of the First International Workshop on Data Driven Treatment Response Assessment, DATRA 2018 and the Third International Workshop on Preterm, Perinatal and Paediatric Image Analysis, PIPPI 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018. The 5 full papers presented at DATRA 2018 and the 12 full papers presented at PIPPI 2018 were carefully reviewed and selected. The DATRA papers cover a wide range of exploring pattern recognition technologies for tackling clinical issues related to the follow-up analysis of medical data with focus on malignancy progression analysis, computer-aided models of treatment response, and anomaly detection in recovery feedback. The PIPPI papers cover topics of advanced image analysis approaches focused on the analysis of growth and development in the fetal, infant and paediatric period.

Importance of body composition analysis in clinical nutrition
  • Language: en
  • Pages: 196
Medical Image Computing and Computer Assisted Intervention − MICCAI 2017
  • Language: en
  • Pages: 739

Medical Image Computing and Computer Assisted Intervention − MICCAI 2017

  • Type: Book
  • -
  • Published: 2017-09-03
  • -
  • Publisher: Springer

The three-volume set LNCS 10433, 10434, and 10435 constitutes the refereed proceedings of the 20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017, held inQuebec City, Canada, in September 2017. The 255 revised full papers presented were carefully reviewed and selected from 800 submissions in a two-phase review process. The papers have been organized in the following topical sections: Part I: atlas and surface-based techniques; shape and patch-based techniques; registration techniques, functional imaging, connectivity, and brain parcellation; diffusion magnetic resonance imaging (dMRI) and tensor/fiber processing; and image segmentation and modelling. Part II: optical imaging; airway and vessel analysis; motion and cardiac analysis; tumor processing; planning and simulation for medical interventions; interventional imaging and navigation; and medical image computing. Part III: feature extraction and classification techniques; and machine learning in medical image computing.

Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016
  • Language: en
  • Pages: 723

Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016

  • Type: Book
  • -
  • Published: 2016-10-17
  • -
  • Publisher: Springer

The three-volume set LNCS 9900, 9901, and 9902 constitutes the refereed proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, held in Athens, Greece, in October 2016. Based on rigorous peer reviews, the program committee carefully selected 228 revised regular papers from 756 submissions for presentation in three volumes. The papers have been organized in the following topical sections: Part I: brain analysis; brain analysis - connectivity; brain analysis - cortical morphology; Alzheimer disease; surgical guidance and tracking; computer aided interventions; ultrasound image analysis; cancer image analysis; Part II: machine learning and feature selection; deep learning in medical imaging; applications of machine learning; segmentation; cell image analysis; Part III: registration and deformation estimation; shape modeling; cardiac and vascular image analysis; image reconstruction; and MR image analysis.

Machine Learning in Medical Imaging
  • Language: en
  • Pages: 336

Machine Learning in Medical Imaging

  • Type: Book
  • -
  • Published: 2016-10-10
  • -
  • Publisher: Springer

This book constitutes the refereed proceedings of the 7th International Workshop on Machine Learning in Medical Imaging, MLMI 2016, held in conjunction with MICCAI 2016, in Athens, Greece, in October 2016. The 38 full papers presented in this volume were carefully reviewed and selected from 60 submissions. The main aim of this workshop is to help advance scientific research within the broad field of machine learning in medical imaging. The workshop focuses on major trends and challenges in this area, and presents works aimed to identify new cutting-edge techniques and their use in medical imaging.

Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis
  • Language: en
  • Pages: 176

Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis

  • Type: Book
  • -
  • Published: 2017-09-06
  • -
  • Publisher: Springer

This book constitutes the refereed joint proceedings of the 6th Joint International Workshop on Computing and Visualization for Intravascular Imaging and Computer Assisted Stenting, CVII-STENT 2017, and the Second International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2017, held in conjunction with the 20th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2017, in Québec City, QC, Canada, in September 2017. The 6 full papers presented at CVII-STENT 2017 and the 11 full papers presented at LABELS 2017 were carefully reviewed and selected. The CVII-STENT papers feature the state of the art in imaging, treatment, and computer-assisted intervention in the field of endovascular interventions. The LABELS papers present a variety of approaches for dealing with few labels, from transfer learning to crowdsourcing.

New Knowledge in Information Systems and Technologies
  • Language: en
  • Pages: 964

New Knowledge in Information Systems and Technologies

  • Type: Book
  • -
  • Published: 2019-03-29
  • -
  • Publisher: Springer

This book includes a selection of articles from The 2019 World Conference on Information Systems and Technologies (WorldCIST’19), held from April 16 to 19, at La Toja, Spain. WorldCIST is a global forum for researchers and practitioners to present and discuss recent results and innovations, current trends, professional experiences and challenges in modern information systems and technologies research, together with their technological development and applications. The book covers a number of topics, including A) Information and Knowledge Management; B) Organizational Models and Information Systems; C) Software and Systems Modeling; D) Software Systems, Architectures, Applications and Tools; E) Multimedia Systems and Applications; F) Computer Networks, Mobility and Pervasive Systems; G) Intelligent and Decision Support Systems; H) Big Data Analytics and Applications; I) Human–Computer Interaction; J) Ethics, Computers & Security; K) Health Informatics; L) Information Technologies in Education; M) Information Technologies in Radiocommunications; and N) Technologies for Biomedical Applications.

Handbook of Artificial Intelligence in Biomedical Engineering
  • Language: en
  • Pages: 565

Handbook of Artificial Intelligence in Biomedical Engineering

  • Type: Book
  • -
  • Published: 2021-03-29
  • -
  • Publisher: CRC Press

Handbook of Artificial Intelligence in Biomedical Engineering focuses on recent AI technologies and applications that provide some very promising solutions and enhanced technology in the biomedical field. Recent advancements in computational techniques, such as machine learning, Internet of Things (IoT), and big data, accelerate the deployment of biomedical devices in various healthcare applications. This volume explores how artificial intelligence (AI) can be applied to these expert systems by mimicking the human expert’s knowledge in order to predict and monitor the health status in real time. The accuracy of the AI systems is drastically increasing by using machine learning, digitized medical data acquisition, wireless medical data communication, and computing infrastructure AI approaches, helping to solve complex issues in the biomedical industry and playing a vital role in future healthcare applications. The volume takes a multidisciplinary perspective of employing these new applications in biomedical engineering, exploring the combination of engineering principles with biological knowledge that contributes to the development of revolutionary and life-saving concepts.

Machine Learning in Medical Imaging
  • Language: en
  • Pages: 501

Machine Learning in Medical Imaging

The two-volume set LNCS 14348 and 14139 constitutes the proceedings of the 14th International Workshop on Machine Learning in Medical Imaging, MLMI 2023, held in conjunction with MICCAI 2023, in Vancouver, Canada, in October 2023. The 93 full papers presented in the proceedings were carefully reviewed and selected from 139 submissions. They focus on major trends and challenges in artificial intelligence and machine learning in the medical imaging field, translating medical imaging research into clinical practice. Topics of interests included deep learning, generative adversarial learning, ensemble learning, transfer learning, multi-task learning, manifold learning, reinforcement learning, along with their applications to medical image analysis, computer-aided diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc.

Machine Learning in Medical Imaging
  • Language: en
  • Pages: 352

Machine Learning in Medical Imaging

  • Type: Book
  • -
  • Published: 2015-10-08
  • -
  • Publisher: Springer

This book constitutes the proceedings of the 6th International Workshop on Machine Learning in Medical Imaging, MLMI 2015, held in conjunction with MICCAI 2015, in Munich in October 2015. The 40 full papers presented in this volume were carefully reviewed and selected from 69 submissions. The workshop focuses on major trends and challenges in the area of machine learning in medical imaging and present works aimed to identify new cutting-edge techniques and their use in medical imaging.