You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Computer-based design and modeling, computational approaches, and instrumental methods for elucidating molecular mechanisms of protein folding and ligand-acceptor interactions are included in Volumes 202 and 203, as are genetic and chemical methods for the production of functional molecules including antibodies and antigens, enzymes, receptors, nucleic acids and polysaccharides, and drugs.
The third volume in the series on Computer Simulation of Biomolecular Systems continues with the format introduced in the first volume [1] and elaborated in the second volume [2]. The primary emphasis is on the methodological aspects of simulations, although there are some chapters that present the results obtained for specific systems of biological interest. The focus of this volume has changed somewhat since there are several chapters devoted to structure-based ligand design, which had only a single chapter in the second volume. It seems useful to set the stage for this volume by quoting from my preface to Volume 2 [2]. "The long-range 'goal of molecular approaches to biology is to describ...
Presents methods for determining the secondary and tertiary structure of proteins. The issues covered here involve theoretical/empirical approaches for predicting protein structure; a review using protein ligand interactions to study surface properties of proteins; use of fluorescence techniques to study structure and dynamics of proteins; and limited proteolysis with monoclonal antibodies to understand how specific structural features confer biological function.
The prediction of the conformation of proteins has developed from an intellectual exercise into a serious practical endeavor that has great promise to yield new stable enzymes, products of pharmacological significance, and catalysts of great potential. With the application of predic tion gaining momentum in various fields, such as enzymology and immunology, it was deemed time that a volume be published to make available a thorough evaluation of present methods, for researchers in this field to expound fully the virtues of various algorithms, to open the field to a wider audience, and to offer the scientific public an opportunity to examine carefully its successes and failures. In this manner...
Research activity on intermediate filaments (IF) has increased dramatically over the past decade. For the most part, this surge of interest is due to their identification as ubiquitous constituents of the cytoskeleton and karyoskeleton (nuclear matrix) of eukaryotic cells and the fact that we know very little regarding their functions. In sharp contrast to the other major cytoskeletal systems, microfilaments and microtubules, IF exhibit a high degree of heterogeneity with regard to their protein subunit composition. Indeed, one can only marvel at the number of different IF polypeptides, their associated proteins (IFAP) and, consequently, the number of genes involved in encoding the multiple ...
The study of molecular clouds has received increasing interest over recent years, particularly in the UK with the advent of powerful new instruments such as MERLIN and the Maxwell millimetre wave telescope. This book is based on the proceedings of the Seventh Manchester International Astronomy Conference which brought together an international list of speakers to discuss important new developments in this field. The book covers a wide range of topics relevant to the general subject of molecular clouds, with review articles and papers from an impressive list of contributors. Much new work in this area is covered, and consequently this book should become an important reference source for workers in this and related fields.
Nucleic acids are the fundamental building blocks of DNA and RNA and are found in virtually every living cell. Molecular biology is a branch of science that studies the physicochemical properties of molecules in a cell, including nucleic acids, proteins, and enzymes. Increased understanding of nucleic acids and their role in molecular biology will further many of the biological sciences including genetics, biochemistry, and cell biology. Progress in Nucleic Acid Research and Molecular Biology is intended to bring to light the most recent advances in these overlapping disciplines with a timely compilation of reviews comprising each volume. Follow the new editor-in-chief, P. Michael Conn, as h...
This volume focuses on filamentous fungi and highlights the advances of the past decade, both in methodology and in the understanding of genomic organization and regulation of gene and pathway expression. The approaches and techniques of molecular biology enable us to ask and answer fundamental questions about many aspects of fungal biology, and open the way to the directed manipulation of fungal genetics. Moreover, this book describes the development and advancement of fungal genes and the ways in which these are being exploited in species of economic importance either in biotechnology or in biochemistry.
This journey through the fascinating world of molecular topology focuses on catenanes, rotaxanes and knots, their synthesis, properties, and applications and the theory of interlocking and interpenetrating molecules. Nearly one hundred years of progress have passed since Willstätter's speculative vision of a molecule consisting of two interlinked rings. But even today the synthesis of such structures are a challenge to the creativity of synthetic chemists. These molecules are not only of academic interest, since they occur naturally. In such molecules as DNA, knots and related topological features play a key role in biochemical processes. In addition, extensive research on the properties of...