You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The third volume in the series on Computer Simulation of Biomolecular Systems continues with the format introduced in the first volume [1] and elaborated in the second volume [2]. The primary emphasis is on the methodological aspects of simulations, although there are some chapters that present the results obtained for specific systems of biological interest. The focus of this volume has changed somewhat since there are several chapters devoted to structure-based ligand design, which had only a single chapter in the second volume. It seems useful to set the stage for this volume by quoting from my preface to Volume 2 [2]. "The long-range 'goal of molecular approaches to biology is to describ...
Computer-based design and modeling, computational approaches, and instrumental methods for elucidating molecular mechanisms of protein folding and ligand-acceptor interactions are included in Volumes 202 and 203, as are genetic and chemical methods for the production of functional molecules including antibodies and antigens, enzymes, receptors, nucleic acids and polysaccharides, and drugs.
The prediction of the conformation of proteins has developed from an intellectual exercise into a serious practical endeavor that has great promise to yield new stable enzymes, products of pharmacological significance, and catalysts of great potential. With the application of predic tion gaining momentum in various fields, such as enzymology and immunology, it was deemed time that a volume be published to make available a thorough evaluation of present methods, for researchers in this field to expound fully the virtues of various algorithms, to open the field to a wider audience, and to offer the scientific public an opportunity to examine carefully its successes and failures. In this manner...
Presents methods for determining the secondary and tertiary structure of proteins. The issues covered here involve theoretical/empirical approaches for predicting protein structure; a review using protein ligand interactions to study surface properties of proteins; use of fluorescence techniques to study structure and dynamics of proteins; and limited proteolysis with monoclonal antibodies to understand how specific structural features confer biological function.
The three-dimensional structure of proteins is a key factor in their biological activity. There is an increasing need to be able to predict the structure of a protein once its amino-acid sequence is known; this book presents practical methods of achieving that ambitious aim, using the latest computer modelling algorithms. - ;The prediction of the three-dimensional structure of a protein from its sequence is a problem faced by an ever-increasing number of biological scientists as they strive to utilize genetic information. The increasing sizes of the sequence and structural databases, the improvements in computing power, and the deeper understanding of the principles of protein structure have led to major developments in the field in the last few years. This book presents practical computer-based methods using the latest computer modelling algorithms. -
This text offers in-depth perspectives on every aspect of protein structure identification, assessment, characterization, and utilization, for a clear understanding of the diversity of protein shapes, variations in protein function, and structure-based drug design. The authors cover numerous high-throughput technologies as well as computational met
Nucleic acids are the fundamental building blocks of DNA and RNA and are found in virtually every living cell. Molecular biology is a branch of science that studies the physicochemical properties of molecules in a cell, including nucleic acids, proteins, and enzymes. Increased understanding of nucleic acids and their role in molecular biology will further many of the biological sciences including genetics, biochemistry, and cell biology. Progress in Nucleic Acid Research and Molecular Biology is intended to bring to light the most recent advances in these overlapping disciplines with a timely compilation of reviews comprising each volume. Follow the new editor-in-chief, P. Michael Conn, as h...
This book constitutes the refereed proceedings of the 24th International Colloquium on Automata, Languages and Programming, ICALP '97, held in Bologna, Italy, in July 1997. ICALP '97 celebrated the 25th anniversary of the European Association for Theoretical Computer Science (EATCS), which has sponsored the ICALP meetings since 1972. The volume presents 73 revised full papers selected from a total of 197 submissions. Also included are six invited contributions. ICALP is one of the few flagship conferences in the area. The book addresses all current topics in theoretical computer science.
Computational biology is a rapidly expanding field, and the number and variety of computational methods used for DNA and protein sequence analysis is growing every day. These algorithms are extremely valuable to biotechnology companies and to researchers and teachers in universities. This book explains the latest computer technology for analyzing DNA, RNA, and protein sequences. Clear and easy to follow, designed specifically for the non-computer scientist, it will help biologists make better choices on which algorithm to use. New techniques and demonstrations are elucidated, as are state-of-the-art problems, and more advanced material on the latest algorithms. The primary audience for this ...