You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Functionalized magnetic nanomaterials are used in data storage, biomedical, environmental, and heterogeneous catalysis applications but there remain developmental challenges to overcome. Nanostructured Magnetic Materials: Functionalization and Diverse Applications covers different synthesis methods for magnetic nanomaterials and their functionalization strategies and highlights recent progress, opportunities, and challenges to utilizing these materials in real-time applications. Reviews recent progress made in the surface functionalization of magnetic nanoparticles Discusses physico-chemical characterization and synthesis techniques Presents the effect of the external magnetic field Details biological, energy, and environmental applications as well as future directions This reference will appeal to researchers, professionals, and advanced students in materials science and engineering and related fields.
The Symposium on Nanostructured Materials and Systems was held during the 8th Pacific Rim Conference on Ceramic and Glass Technology (PACRIM 8) from May 31-June 5, 2009 in Vancouver, Canada. This symposium aimed to review the progress in the state-of-the-art of nanoscience and nanotechnology including synthesis, processing, modeling, applications and assessment of toxicological potential of nanomatter. More than 55 contributions (invited talks, oral presentations, and posters), were presented by participants, from all over the world, representing universities, research institutions, and industry which made this symposium an attractive forum for interdisciplinary presentations and discussions...
The latest developments in ceramic, glass, and composites processing and characterization are covered in this volume. Included are papers from industry, academia, and research laboratories on the advances in basic science and technology and how these can be used to address technological issues faced by the industry.
Controlling the properties of materials by modifying their composition and by manipulating the arrangement of atoms and molecules is a dream that can be achieved by nanotechnology. As one of the fastest developing and innovative -- as well as well-funded -- fields in science, nanotechnology has already significantly changed the research landscape in chemistry, materials science, and physics, with numerous applications in consumer products, such as sunscreens and water-repellent clothes. It is also thanks to this multidisciplinary field that flat panel displays, highly efficient solar cells, and new biological imaging techniques have become reality. This second, enlarged edition has been full...
Controlling the properties of materials by modifying their composition and by manipulating the arrangement of atoms and molecules is a dream that can be achieved by nanotechnology. As one of the fastest developing and innovative -- as well as well-funded -- fields in science, nanotechnology has already significantly changed the research landscape in chemistry, materials science, and physics, with numerous applications in consumer products, such as sunscreens and water-repellent clothes. It is also thanks to this multidisciplinary field that flat panel displays, highly efficient solar cells, and new biological imaging techniques have become reality. This second, enlarged edition has been full...
Comprises invited and contributed papers, which were presented at the Advanced Structural Materials Symposium held in Cancun, Mexico during the Annual Conference of the Mexican Academy of Materials Science. This proceedings includes overviews and investigations related to advanced structural metallic, ceramic and composite materials.