You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Advances in Resting-State Functional MRI: Methods, Interpretation, and Applications gives readers with basic neuroimaging experience an up-to-date and in-depth understanding of the methods, opportunities, and challenges in rs-fMRI. The book covers current knowledge gaps in rs-fMRI, including "what are biologically plausible brain networks," "how to tell what part is noise," "how to perform quality assurance on the data," "what are the spatial and temporal limits of our ability to resolve FC," and "how to best identify network features related to individual differences or disease state". This book is an ideal reference for neuroscientists, computational neuroscientists, psychologists, biomedical engineers, physicists and medical physicists. Both new and more advanced researchers alike will be able to discover new information distilled from the past decade of research to become well-versed in rs-fMRI-related topics. - Presents the first book to explain the latest methods, opportunities and challenges of Resting-state Functional MRI - Edited and authored by leading researchers in fMRI - Includes neuroscientific and clinical applications
Brain mapping is dedicated to using brain imaging techniques such as MRI, CT, PET, EEG, and fNIRS to understand the brain anatomy, structure, and function, and how it contributes to cognition, behavior, and deficits of brain diseases. Recently, machine learning is in a stage of rapid development, and various new technologies are continuously introduced into the field, from traditional approaches
The physiological magnetic resonance techniques of diffusion imaging, perfusion imaging and spectroscopy offer insights into brain structure, function and metabolism. Until recently, they were mainly applied within the realm of medical research, but with their increasing availability on clinical MRI machines, they are now coming into clinical practice for the evaluation of neuropathology in individual patients. This book provides the reader with a thorough review of the underlying physical principles of each of these methods, as well as comprehensive coverage of their clinical applications. Topics covered include single- and multiple-voxel MRS techniques, MR perfusion based on both arterial spin labelling and dynamic bolus tracking approaches, and diffusion-weighted imaging, including techniques for mapping brain white matter fiber bundles. Clinical applications are reviewed in depth for each technique, with case reports included throughout the book. Attention is also drawn to possible artifacts and pitfalls associated with these techniques.
This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the VI International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2017), which took place in Lyon on November 29 – December 1, 2017. The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure, network dynamics; diffusion, epidemics and spreading processes; resilience and control as well as all the main network applications, including social and political networks; networks in finance and economics; biological and ecological networks and technological networks.