You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Methods by which robots can learn control laws that enable real-time reactivity using dynamical systems; with applications and exercises. This book presents a wealth of machine learning techniques to make the control of robots more flexible and safe when interacting with humans. It introduces a set of control laws that enable reactivity using dynamical systems, a widely used method for solving motion-planning problems in robotics. These control approaches can replan in milliseconds to adapt to new environmental constraints and offer safe and compliant control of forces in contact. The techniques offer theoretical advantages, including convergence to a goal, non-penetration of obstacles, and ...
A comprehensive introduction to the mathematical foundations of movement and actuation that apply equally to animals and machines. This textbook offers a computational framework for the sensorimotor stage of development as applied to robotics. Much work in developmental robotics is based on ad hoc examples, without a full computational basis. This book's comprehensive and complete treatment fills the gap, drawing on the principal mechanisms of development in the first year of life to introduce what is essentially an operating system for developing robots. The goal is to apply principles of development to robot systems that not only achieve new levels of performance but also provide evidence for scientific theories of human development.
An introduction to neurorobotics that presents approaches and design principles for developing intelligent autonomous systems grounded in biology and neuroscience. Neurorobotics is an interdisciplinary field that draws on artificial intelligence, cognitive sciences, computer science, engineering, psychology, neuroscience, and robotics. Because the brain is closely coupled to the body and situated in the environment, neurorobots—autonomous systems modeled after some aspect of the brain—offer a powerful tool for studying neural function and may also be a means for developing autonomous systems with intelligence that rivals that of biological organisms. This textbook introduces approaches a...
The current state of the art in cognitive robotics, covering the challenges of building AI-powered intelligent robots inspired by natural cognitive systems. A novel approach to building AI-powered intelligent robots takes inspiration from the way natural cognitive systems—in humans, animals, and biological systems—develop intelligence by exploiting the full power of interactions between body and brain, the physical and social environment in which they live, and phylogenetic, developmental, and learning dynamics. This volume reports on the current state of the art in cognitive robotics, offering the first comprehensive coverage of building robots inspired by natural cognitive systems. Con...
Since the manipulation tasks for robotic systems become more and more complicated, multi-robot cooperation has been attracting much attention recently. Furthermore, under the trend of human-robot co-existence, collision-free motion control is now also desired on multi-robot groups. This dissertation aims to design a novel distributed optimal control framework to deal with multi-robot cooperative manipulation of rigid objects in dynamic environments. Besides object transportation, the control scheme also tackles obstacle avoidance, joint-space performance optimisation and internal force suppression. The proposed control framework has a two-layer structure, with a distributed optimisation algo...
Humans have always dreamed of automating laborious physical and intellectual tasks, but the latter has proved more elusive than naively suspected. Seven decades of systematic study of Artificial Intelligence have witnessed cycles of hubris and despair. The successful realization of General Intelligence (evidenced by the kind of cross-domain flexibility enjoyed by humans) will spawn an industry worth billions and transform the range of viable automation tasks.The recent notable successes of Machine Learning has lead to conjecture that it might be the appropriate technology for delivering General Intelligence. In this book, we argue that the framework of machine learning is fundamentally at od...
Semi-infinite programming (briefly: SIP) is an exciting part of mathematical programming. SIP problems include finitely many variables and, in contrast to finite optimization problems, infinitely many inequality constraints. Prob lems of this type naturally arise in approximation theory, optimal control, and at numerous engineering applications where the model contains at least one inequality constraint for each value of a parameter and the parameter, repre senting time, space, frequency etc., varies in a given domain. The treatment of such problems requires particular theoretical and numerical techniques. The theory in SIP as well as the number of numerical SIP methods and appli cations hav...
This book addresses the central role played by development in cognition. The focus is on applying our knowledge of development in natural cognitive systems, specifically human infants, to the problem of creating artificial cognitive systems in the guise of humanoid robots. The approach is founded on the three-fold premise that (a) cognition is the process by which an autonomous self-governing agent acts effectively in the world in which it is embedded, (b) the dual purpose of cognition is to increase the agent's repertoire of effective actions and its power to anticipate the need for future actions and their outcomes, and (c) development plays an essential role in the realization of these co...
Methods by which robots can learn control laws that enable real-time reactivity using dynamical systems; with applications and exercises. This book presents a wealth of machine learning techniques to make the control of robots more flexible and safe when interacting with humans. It introduces a set of control laws that enable reactivity using dynamical systems, a widely used method for solving motion-planning problems in robotics. These control approaches can replan in milliseconds to adapt to new environmental constraints and offer safe and compliant control of forces in contact. The techniques offer theoretical advantages, including convergence to a goal, non-penetration of obstacles, and ...
With respect to the first edition as Volume 218 in the Lecture Notes in Con trol and Information Sciences series the basic idea of the second edition has remained the same: to provide a compact presentation of some basic ideas in the classical theory of input-output and closed-loop stability, together with a choice of contributions to the recent theory of nonlinear robust and 1foo control and passivity-based control. Nevertheless, some parts of the book have been thoroughly revised and/or expanded, in order to have a more balanced presen tation of the theory and to include some of the new developments which have been taken place since the appearance of the first edition. I soon realized, how...