You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The special volume offers a global guide to new concepts and approaches concerning the following topics: reduced basis methods, proper orthogonal decomposition, proper generalized decomposition, approximation theory related to model reduction, learning theory and compressed sensing, stochastic and high-dimensional problems, system-theoretic methods, nonlinear model reduction, reduction of coupled problems/multiphysics, optimization and optimal control, state estimation and control, reduced order models and domain decomposition methods, Krylov-subspace and interpolatory methods, and applications to real industrial and complex problems. The book represents the state of the art in the development of reduced order methods. It contains contributions from internationally respected experts, guaranteeing a wide range of expertise and topics. Further, it reflects an important effor t, carried out over the last 12 years, to build a growing research community in this field. Though not a textbook, some of the chapters can be used as reference materials or lecture notes for classes and tutorials (doctoral schools, master classes).
An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This second volume focuses on applications in engineering, biomedical engineering, computational physics and computer science.
Extremum Seeking through Delays and PDEs, the first book on the topic, expands the scope of applicability of the extremum seeking method, from static and finite-dimensional systems to infinite-dimensional systems. Readers will find numerous algorithms for model-free real-time optimization are developed and their convergence guaranteed, extensions from single-player optimization to noncooperative games, under delays and PDEs, are provided, the delays and PDEs are compensated in the control designs using the PDE backstepping approach, and stability is ensured using infinite-dimensional versions of averaging theory, and accessible and powerful tools for analysis. This book is intended for control engineers in all disciplines (electrical, mechanical, aerospace, chemical), mathematicians, physicists, biologists, and economists. It is appropriate for graduate students, researchers, and industrial users.
This book introduces transfinite interpolation as a generalization of interpolation of data prescribed at a finite number of points to data prescribed on a geometrically structured set, such as a piece of curve, surface, or submanifold. The time-independent theory is readily extended to a moving/deforming data set whose dynamics is specified in a Eulerian or Lagrangian framework. The resulting innovative tools cover a very broad spectrum of applications in fluid mechanics, geometric optimization, and imaging. The authors chose to focus on the dynamical mesh updating in fluid mechanics and the construction of velocity fields from the boundary expression of the shape derivative. Transfinite Interpolations and Eulerian/Lagrangian Dynamics is a self-contained graduate-level text that integrates theory, applications, numerical approximations, and computational techniques. It applies transfinite interpolation methods to finite element mesh adaptation and ALE fluid-structure interaction. Specialists in applied mathematics, physics, mechanics, computational sciences, imaging sciences, and engineering will find this book of interest.
This book provides the mathematical foundations needed for designing practical controllers for linear time-invariant systems. The authors accomplish this by incorporating intentional time delays into measurements with the goal of achieving anticipation capabilities, reduction in noise sensitivity, and a fast response. The benefits of these types of delay-based controllers have long been recognized, but designing them based on an analytical approach became possible only recently. Design of Delay-Based Controllers for Linear Time-Invariant Systems provides a thorough survey of the field and the details of the analytical approaches needed to design delay-based controllers. In addition, readers ...
This self-contained book presents in a unified, systematic way the basic principles of optimal control governed by ODEs. Using a variational perspective, the author incorporates important restrictions like constraints for control and state, as well as the state system itself, into the equivalent variational reformulation of the problem. The fundamental issues of existence of optimal solutions, optimality conditions, and numerical approximation are then examined from this variational viewpoint. Inside, readers will find a unified approach to all the basic issues of optimal control, academic and real-world examples testing the book’s variational approach, and a rigorous treatment stressing ideas and arguments rather than the underlying mathematical formalism. A Variational Approach to Optimal Control of ODEs is mainly for applied analysts, applied mathematicians, and control engineers, but will also be helpful to other scientists and engineers who want to understand the basic principles of optimal control governed by ODEs. It requires no prerequisites in variational problems or expertise in numerical approximation. It can be used for a first course in optimal control.
In the past decades, model reduction has become an ubiquitous tool in analysis and simulation of dynamical systems, control design, circuit simulation, structural dynamics, CFD, and many other disciplines dealing with complex physical models. The aim of this book is to survey some of the most successful model reduction methods in tutorial style articles and to present benchmark problems from several application areas for testing and comparing existing and new algorithms. As the discussed methods have often been developed in parallel in disconnected application areas, the intention of the mini-workshop in Oberwolfach and its proceedings is to make these ideas available to researchers and practitioners from all these different disciplines.
This work presents recent mathematical methods in the area of optimal control with a particular emphasis on the computational aspects and applications. Optimal control theory concerns the determination of control strategies for complex dynamical systems, in order to optimize some measure of their performance. Started in the 60's under the pressure of the "space race" between the US and the former USSR, the field now has a far wider scope, and embraces a variety of areas ranging from process control to traffic flow optimization, renewable resources exploitation and management of financial markets. These emerging applications require more and more efficient numerical methods for their solution, a very difficult task due the huge number of variables. The chapters of this volume give an up-to-date presentation of several recent methods in this area including fast dynamic programming algorithms, model predictive control and max-plus techniques. This book is addressed to researchers, graduate students and applied scientists working in the area of control problems, differential games and their applications.
Interest in the area of control of systems defined by partial differential Equations has increased strongly in recent years. A major reason has been the requirement of these systems for sensible continuum mechanical modelling and optimization or control techniques which account for typical physical phenomena. Particular examples of problems on which substantial progress has been made are the control and stabilization of mechatronic structures, the control of growth of thin films and crystals, the control of Laser and semi-conductor devices, and shape optimization problems for turbomachine blades, shells, smart materials and microdiffractive optics. This volume contains original articles by w...
This book highlights new developments in the wide and growing field of partial differential equations (PDE)-constrained optimization. Optimization problems where the dynamics evolve according to a system of PDEs arise in science, engineering, and economic applications and they can take the form of inverse problems, optimal control problems or optimal design problems. This book covers new theoretical, computational as well as implementation aspects for PDE-constrained optimization problems under uncertainty, in shape optimization, and in feedback control, and it illustrates the new developments on representative problems from a variety of applications.