You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The problem of dealing with missing or incomplete data in machine learning and computer vision arises in many applications. Recent strategies make use of generative models to impute missing or corrupted data. Advances in computer vision using deep generative models have found applications in image/video processing, such as denoising, restoration, super-resolution, or inpainting. Inpainting and Denoising Challenges comprises recent efforts dealing with image and video inpainting tasks. This includes winning solutions to the ChaLearn Looking at People inpainting and denoising challenges: human pose recovery, video de-captioning and fingerprint restoration. This volume starts with a wide review...
This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning. Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning m...
The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. ...
Modern neural networks gave rise to major breakthroughs in several research areas. In neuroscience, we are witnessing a reappraisal of neural network theory and its relevance for understanding information processing in biological systems. The research presented in this book provides various perspectives on the use of artificial neural networks as models of neural information processing. We consider the biological plausibility of neural networks, performance improvements, spiking neural networks and the use of neural networks for understanding brain function.
Visual shape analysis plays a fundamental role in perception by man and by computer, allowing for inferences about properties of objects and scenes in the physical world. Mathematical approaches to describing visual form can benefit from the use of representations that simultaneously capture properties of an object's outline as well as its interior. Motivated by the success of medial models, this doctoral thesis revisits a quantity related to medial axis computations, the average outward flux of the gradient of the Euclidean distance function from a boundary, and then addresses three distinct problems using this measure. First, I consider the problem of view sphere partitioning for view-base...
A comprehensive Introduction to the world of brain and behavior computational models This book provides a broad collection of articles covering different aspects of computational modeling efforts in psychology and neuroscience. Specifically, it discusses models that span different brain regions (hippocampus, amygdala, basal ganglia, visual cortex), different species (humans, rats, fruit flies), and different modeling methods (neural network, Bayesian, reinforcement learning, data fitting, and Hodgkin-Huxley models, among others). Computational Models of Brain and Behavior is divided into four sections: (a) Models of brain disorders; (b) Neural models of behavioral processes; (c) Models of ne...
Üç Ekoloji Doğa Düşünce Siyaset 10. Sayı'nın dosya konusu Gezi Direnişi. Üç Ekoloji’nin Gezi özel sayısını hazırlamaya Temmuz ayının ortalarında, Gezi direnişinin yaklaşık ikinci ayında başladık. Direnişin sıcak günlerinde izlenimler, duvar yazıları, videolar ve fotoğraflarla oluşan Gezi literatürü, yorum ve analizlerle zenginleşmeye başlamıştı. Gezi direnişi devasa bir halk hareketiydi ve elbette herkes içinde bulunduğu, gördüğü ve anlamlandırdığı taraftan anlatıyor, yorumluyordu. Ortaklaşılan noktalar kadar ayrı düşülen yanlar da vardı. Gezi Parkı’nda, Taksim Meydanı’nda, İstanbul’un diğer mahallelerinde ve Türkiye’ni...
The three-volume set LNCS 9913, LNCS 9914, and LNCS 9915 comprises the refereed proceedings of the Workshops that took place in conjunction with the 14th European Conference on Computer Vision, ECCV 2016, held in Amsterdam, The Netherlands, in October 2016. The three-volume set LNCS 9913, LNCS 9914, and LNCS 9915 comprises the refereed proceedings of the Workshops that took place in conjunction with the 14th European Conference on Computer Vision, ECCV 2016, held in Amsterdam, The Netherlands, in October 2016. 27 workshops from 44 workshops proposals were selected for inclusion in the proceedings. These address the following themes: Datasets and Performance Analysis in Early Vision; Visual A...
Fractals are infinite, complex patterns used in modeling physical and dynamic systems. Fractal theory research has increased across different fields of applications including engineering science, health science, and social science. Recent literature shows the vital role fractals play in digital image analysis, specifically in biomedical image processing. Fractal graphics is an interdisciplinary field that deals with how computers can be used to gain high-level understanding from digital images. Integrating artificial intelligence with fractal characteristics has resulted in new interdisciplinary research in the fields of pattern recognition and image processing analysis. Intelligent Fractal-...
This book covers a large set of methods in the field of Artificial Intelligence - Deep Learning applied to real-world problems. The fundamentals of the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first summarized in this book, which offers a comprehensive preamble for further problem–oriented chapters. The most interesting and open problems of machine learning in the framework of Deep Learning are discussed in this book and solutions are proposed. This book illustrates how to implement the zero-shot learning with Deep Neural Network Classifiers, which require a large amount of training data. The lack of annotated training data naturally pushes the research...