You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Mathematical biomedicine is a rapidly developing interdisciplinary field of research that connects the natural and exact sciences in an attempt to respond to the modeling and simulation challenges raised by biology and medicine. There exist a large number of mathematical methods and procedures that can be brought in to meet these challenges and this book presents a palette of such tools ranging from discrete cellular automata to cell population based models described by ordinary differential equations to nonlinear partial differential equations representing complex time- and space-dependent continuous processes. Both stochastic and deterministic methods are employed to analyze biological phe...
Dedicated to Professor S. Leela in recognition of her significant contribution to the field of nonlinear dynamics and differential equations, this text consists of 38 papers contributed by experts from 15 countries, together with a survey of Professor Leela's work. The first group of papers examines stability, the second process controls, and the third section contains papers on various topics, including solutions for new classes of systems of equations and boundary problems, and proofs of basic theorems. Many of the featured problems are associated with the ideas and methods proposed and developed by Professor Leela.
"Based on the International Conference on Optimal Control of Differential Equations held recently at Ohio University, Athens, this Festschrift to honor the sixty-fifth birthday of Constantin Corduneanu an outstanding researcher in differential and integral equations provides in-depth coverage of recent advances, applications, and open problems relevant to mathematics and physics. Introduces new results as well as novel methods and techniques!"
This book gives a comprehensive treatment of the fundamental necessary and sufficient conditions for optimality for finite-dimensional, deterministic, optimal control problems. The emphasis is on the geometric aspects of the theory and on illustrating how these methods can be used to solve optimal control problems. It provides tools and techniques that go well beyond standard procedures and can be used to obtain a full understanding of the global structure of solutions for the underlying problem. The text includes a large number and variety of fully worked out examples that range from the classical problem of minimum surfaces of revolution to cancer treatment for novel therapy approaches. Al...
This book presents applications of geometric optimal control to real life biomedical problems with an emphasis on cancer treatments. A number of mathematical models for both classical and novel cancer treatments are presented as optimal control problems with the goal of constructing optimal protocols. The power of geometric methods is illustrated with fully worked out complete global solutions to these mathematically challenging problems. Elaborate constructions of optimal controls and corresponding system responses provide great examples of applications of the tools of geometric optimal control and the outcomes aid the design of simpler, practically realizable suboptimal protocols. The book blends mathematical rigor with practically important topics in an easily readable tutorial style. Graduate students and researchers in science and engineering, particularly biomathematics and more mathematical aspects of biomedical engineering, would find this book particularly useful.
This edited volume discusses the complexity of tumor microenvironments during cancer development, progression and treatment. Each chapter presents a different mathematical model designed to investigate the interactions between tumor cells and the surrounding stroma and stromal cells. The topics covered in this book include the quantitative image analysis of a tumor microenvironment, the microenvironmental barriers in oxygen and drug delivery to tumors, the development of tumor microenvironmental niches and sanctuaries, intravenous transport of the circulating tumor cells, the role of the tumor microenvironment in chemotherapeutic interventions, the interactions between tumor cells, the extra...
This collection of papers offers a broad synopsis of state-of-the-art mathematical methods used in modeling the interaction between tumors and the immune system. These papers were presented at the four-day workshop on Mathematical Models of Tumor-Immune System Dynamics held in Sydney, Australia from January 7th to January 10th, 2013. The workshop brought together applied mathematicians, biologists, and clinicians actively working in the field of cancer immunology to share their current research and to increase awareness of the innovative mathematical tools that are applicable to the growing field of cancer immunology. Recent progress in cancer immunology and advances in immunotherapy suggest...
Contains papers from a summer 1997 meeting on recent developments and important open problems in geometric control theory. Topics include linear control systems in Lie groups and controllability, real analytic geometry and local observability, singular extremals of order 3 and chattering, infinite time horizon stochastic control problems in hyperbolic three space, and Monge-Ampere equations. No index. Annotation copyrighted by Book News, Inc., Portland, OR.
This book focuses on the analysis of cancer dynamics and the mathematically based synthesis of anticancer therapy. It summarizes the current state-of-the-art in this field and clarifies common misconceptions about mathematical modeling in cancer. Additionally, it encourages closer cooperation between engineers, physicians and mathematicians by showing the clear benefits of this without stating unrealistic goals. Development of therapy protocols is realized from an engineering point of view, such as the search for a solution to a specific control-optimization problem. Since in the case of cancer patients, consecutive measurements providing information about the current state of the disease ar...